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Recent progress in manipulating atomic and condensed matter systems has instigated a surge
of interest in non-equilibrium physics, including many-body dynamics of trapped ultracold atoms
and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the
complexity of such non-equilibrium systems requires a number of approximations to make theoretical
descriptions tractable. In particular, it is often assumed that spatially separated components of a
system thermalize with their immediate surroundings, although the global state of the system is
out of equilibrium. This powerful assumption reduces the complexity of non-equilibrium systems
to the local application of well-founded equilibrium concepts. While this technique appears to be
consistent for the description of some phenomena, we show that it fails for quantum friction by
underestimating by approximately 80% the magnitude of the drag force. Our results show that
the correlations among the components of driven, but steady-state, quantum systems invalidate the
assumption of local thermal equilibrium, calling for a critical reexamination of this approach for
describing the physics of non-equilibrium systems.

PACS numbers: 42.50.Ct, 12.20.-m,78.20.Ci

In recent years the physics of non-equilibrium sys-
tems has attracted a lot of attention from different dis-
ciplines, such as stochastic thermodynamics and many-
body quantum dynamics [1–3]. In particular, there has
been a renewed interest in non-equilibrium dispersion
forces. Better known for equilibrium phenomena such
as the van der Waals/Casimir-Polder force [4] and the
Casimir effect [5], these interactions play an important
role in several fields of physics, including atomic [6] and
statistical physics [7, 8], gravitation [9] and cosmology
[10]. Non-equilibrium physics enters in the description of
these phenomena when, for example, temperature gradi-
ents or mechanical motion become relevant elements of
the system.

From the theoretical standpoint, one must often rely on
approximations in order to predict the non-equilibrium
physics of a specific system. One of the most ubiquitous
approaches relies on the local thermal equilibrium (LTE)
approximation, which consists in treating the individual
components of a system as if they were in local ther-
mal equilibrium with their immediate surroundings. The
main advantage of such a technique is that common equi-
librium tools, such as the fluctuation-dissipation theorem
(FDT) [11], can be applied locally, and then these local
results are combined to describe the non-equilibrium dy-
namics of the full system. The usual justification for
the LTE approximation is that the correlation length of
the fields that mediate the interactions is often rather
short (the dynamics in sufficiently well-separated loca-
tions are incoherent and can be treated as being inde-
pendent [12, 13]), and the sub-systems locally relax to

equilibrium on a fast time-scale. The LTE approxima-
tion has been used in several non-equilibrium contexts,
such as near-field radiative heat transfer [12], Casimir
forces between bodies at different temperatures [14, 15],
and quantum friction [16–21]. In all these cases, however,
a quantitative assessment of the LTE approximation is
missing. In the present work, we show that this common
approach actually fails to provide reliable predictions for
quantum friction.

Let us consider an atom moving in vacuum with non-
relativistic velocity v at a distance za > 0 above and
parallel to a flat surface placed at z = 0 (see Fig.
1). The atom couples to the electromagnetic field via

its dipole moment d̂(t) (the hat indicates a quantum
operator). The frictional force can be obtained from
the expectation value of the Lorentz force on the mov-
ing atom [22, 23]. In our case this is equivalent to

Ffric = limt→∞
∑

i〈d̂i(t)∇‖Êi(ra(t), t)〉, where ra(t) is
the instantaneous position of the atom. In previous work
[24] it was shown that this force at zero temperature
(quantum friction) can be written as

Ffric = −2

∫ ∞
0

dω

∫
d2k

(2π)2

× kTr [S(k · v − ω;v) ·GI(k, za, ω)] . (1)

Here, S(ω;v) is the non-equilibrium velocity-dependent
dipole power spectrum tensor (related to the spectral dis-
tribution of energy in the dipole), and G(k, za, ω) is the
Fourier transform (in time and along the (x, y) plane) of
the Green tensor describing the electromagnetic response
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of the surface. In the following the subscript I (R) means
that the imaginary (real) part has to be (component-
wise) considered, while “Tr” traces over tensor indices.

The standard approach used in the literature to com-
pute the frictional force has been to resort to the LTE
approximation. It is assumed that the particle and the
surface surrounded by its electromagnetic field are lo-
cally at thermal equilibrium at T = 0 in their respective
rest frames, and that the fluctuation-dissipation theorem
separately applies to each subsystem [18–21]. In this case
one assumes that S(ω;v) is related to the imaginary part
of the particle’s polarizability tensor α(ω;v) via the zero-
temperature FDT,

S(ω;v) ≈ ~
π
θ(ω)αI(ω;v). (2)

(the function θ(ω) is the Heaviside function). In this LTE
approximation, the frictional force at low velocities takes
the form [24]

Ffric ≈ −
2~v3

3(2π)3

∫ ∞
−∞
dky

∫ ∞
0

dkx k
4
xTr

[
α′I(0) ·G′I(k, za, 0)

]
,

(3)
where the primes denote frequency derivatives and we
assumed that the motion is along the x-direction. A de-
tailed evaluation of Eq. (3) requires the low-frequency
behavior of the polarizability, which is often calculated
within second-order perturbation theory [22, 25–27]. Al-
though the use of the LTE approximation can be justi-
fied within a second-order perturbative approach in the
dipole strength for particles with large intrinsic dissipa-
tion [28], it becomes less rigorous for atoms, where dissi-
pation is induced by the interaction with the electromag-
netic field. For systems where radiative damping dom-
inates, quantum friction requires a higher-than-second-
order perturbative calculation: Since this necessarily en-
compasses correlations between the atom and the surface
(see Fig. 1), one can expect in this case a failure of the
local thermal equilibrium approximation. This is the key
insight of this paper.

In order to test the validity of the LTE approxima-
tion in quantum friction, we compute the dipole power
spectrum S(ω;v), evaluate the resulting drag force, and
compare it to the LTE result. This entails the compu-
tation of the non-equilibrium steady-state (NESS) of the
joint atom+field+matter system. This difficult problem
becomes manageable by modeling the internal atomic dy-
namics as a harmonic oscillator [29], for which it is pos-
sible to obtain an exact, non-perturbative form for the
dipole power spectrum thanks to the quadratic nature
of the full system Hamiltonian [24]. We work in the
Heisenberg picture to calculate the dipole correlator in
the steady state and then derive the power spectrum.

For simplicity, we consider a dipole with a fixed di-
rection moving along a prescribed trajectory ra(t) =
(ra(t), za). In the non-relativistic approximation the
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FIG. 1: Schematic representation of the difference between
the LTE approximation (a) and the full non-equilibrium de-
scription (b) for quantum friction. In the first case it is as-
sumed that the atom and the surface are separately in ther-
mal equilibrium with their immediate local environments.
This description applies the fluctuation-dissipation theorem
for each sub-system, to approximately describe the full non-
equilibrium system. Correlations between the atom and sur-
face (pictorially represented by the black arrows in (b)) lead
to a failure of the LTE approximation, which underestimates
the magnitude of quantum friction by approximately 80% (see
the main text).

dipole operator’s equation of motion is given by

∂2t d̂(t) + ω2
ad̂(t) = ω2

aα0 · Ê(ra(t), t), (4)

where ωa is the oscillator’s frequency, Ê is the electric
field, and α0 is the static polarizability tensor, assumed
to be symmetric for simplicity (it is proportional to a
projector parallel to the direction of the dipole moment).
We assume that the oscillator has no intrinsic dissipation
- all dissipative dynamics arises from the coupling to the
electromagnetic field. The electric field at the position of
the atom is given by

Ê(ra(t), t) = Ê0(ra(t), t) +

∫ t

ti

dt′
∫ ∞
−∞

dω e−iω(t−t′)

×
∫

d2k

(2π)2
G(k, za, ω) · d̂(t′)eik·(r

‖
a(t)−r

‖
a(t

′)), (5)

where Ê0 is the field that is generated by the quantum
fluctuating currents in the medium, while the second
term is the field induced by the dipole and scattered by
the surface. In the stationary t → ∞ limit, we use that

r
‖
a(t) ≈ r

‖
a + vt. Upon inserting (5) into the equation of

motion for the dipole, we obtain the stationary solution
in Fourier space as

d̂(ω) =

∫
d2k

(2π)2
α(ω;v) · Ê0(k, za, ω + k · v)eik·r

‖
a , (6)
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where we have defined the velocity-dependent polariz-
ability

α(ω;v) =
ω2
a

ω2
a −∆(ω;v)− ω2 − iωγ(ω;v)

α0 . (7)

In this expression, γ is the radiative damping while ∆ is
related to a frequency shift [24, 30], and they are given
by

∆(ω;v) = ω2
a

∫
d2k

(2π)2
Tr [α0 ·GR(k, za, ω + k · v)] ,

(8a)

γ(ω;v) =
ω2
a

ω

∫
d2k

(2π)2
Tr [α0 ·GI(k, za, ω + k · v)] .

(8b)
The dipole correlation tensor, derived from Eq.

(6), defines the power spectrum 〈d̂(ω)d̂(ω′)〉 ≡
(2π)2S(ω;v)δ(ω + ω′), where the average is taken over
the initial factorized state of the system, ρ̂(ti) =
ρ̂a(ti)

⊗
ρ̂f/m(ti). Here, ρ̂a(ti) is the atom’s initial den-

sity matrix and ρ̂f/m(ti) represents the state of the cou-
pled field plus matter subsystem. Both the atom and the
field+matter are assumed to be initially in their respec-
tive ground states. Because of Eq. (6), we can compute

the dipole-dipole correlation in terms of the Ê0 field cor-
relator, and since this field is solely generated by the
static surface its correlator can be evaluated using the
usual equilibrium FDT. In this way we derive the fol-
lowing expression for the power spectrum of the moving
atom (see Supplemental Material [31]):

S(ω;v) =
~
π
θ(ω)αI(ω;v) +

~
π
J(ω;v), (9)

where

J(ω;v) =

∫
d2k

(2π)2
[θ(ω + k · v)− θ(ω)]

× α(ω;v) ·GI(k, za, ω + k · v) · α∗(ω;v). (10)

Equation (9) constitutes the generalized non-equilibrium
FDT for the moving harmonic oscillator. It shows that,
when the system is in a NESS, an extra term J is added
to the standard FDT, Eq. (2). The expression in (9)
is similar to classical non-equilibrium generalizations of
the FDT (see, for example, Refs.[32–36]), where the ad-
ditional term is related to entropy production. However,
these works often include assumptions (e.g. Markovian-
ity) which are incompatible with the description of quan-
tum friction [28].

Upon inserting Eq. (9) into (1), we obtain two distinct
contributions to the quantum frictional force,

Ffric = FLTE
fric + FJ

fric, (11)

which respectively arise from the first and second terms
on the right hand side of (9). As we will show be-
low, the low-velocity expansion of FLTE

fric corresponds to
Eq. (3) [17, 21, 38], while FJ

fric is entirely due to the
non-equilibrium dynamics of our system. We assume
that the motion occurs along the x-direction, so that
Ffric = Ffric x , (here x, and below y and z, are the unit
vectors along the corresponding directions). The total
Green tensor in Eq. (1) can be decomposed as the sum
of the vacuum G0 and the scattered contribution g [37].
Because of Lorentz invariance, G0 does not contribute to
the frictional force [38–41]. For simplicity, we consider
the near-field limit for g, which has an imaginary part
that for our calculation can be written as [31]

g
I
(k, za;ω) =

rI(ω)

2ε0
ke−2kza

(
k2x
k2

xx +
k2y
k2

yy + zz

)
,

(12)

where k = |k| =
√
k2x + k2y, ε0 is the vacuum permit-

tivity, and r(ω) is the quasi-static approximation of the
transverse magnetic reflection coefficient for the planar
surface. Using the previous expression one can show that
in the low-velocity limit the first term in the right hand
side of (11) gives (see Supplemental Material [31])

F̄LTE
fric ≈ −

90ĀLTE

π3
~α2

0ρ
2 v3

(2za)10
, (13)

where α0 = Tr[α0] is the static isotropic (i.e. averaged
over the solid angle) atomic polarizability, ρ is the ma-
terial resistivity, and ĀLTE = 21/20 ≈ 1 is the average
over the solid angle of a geometrical factor describing
the dipole’s orientation [31]. Equation (3) reduces to the
above expression when we use the polarizability given in
(7). For the non-equilibrium correction term in Eq. (11),
we obtain similarly [31]

F̄ J
fric ≈ −

72ĀJ

π3
~α2

0ρ
2 v3

(2za)10
, (14)

where ĀJ = 87/80. Adding the low-velocity expansions
of F̄LTE

fric and F̄ J
fric, the full quantum frictional force be-

comes

F̄fric ≈ −
864

5π3
~α2

0ρ
2 v3

(2za)10
, (15)

which differs by almost a factor of two from the approx-
imate LTE result in Eq. (13). This is the main result
of our paper and demonstrates that the non-equilibrium
contribution to the frictional force is certainly not negli-
gible.

In Fig. 2 we depict the quantum frictional force Eq.
(1) as a function of velocity. For simplicity the dipole
is oriented along a specific direction (see caption of Fig.
2 and Supplemental Material [31]) and moving above a
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metallic surface described by the Drude model permit-
tivity ε(ω) = 1−ω2

p[ω(ω+iΓ)]−1, where ωp is the plasma
frequency and Γ is the metal’s relaxation rate (in this
case the material resistivity is given by ρ = Γ/(ε0ω

2
p)).

For small velocities the friction is well described by the
asymptotic expression Eq. (15) (black dotted line). In
this region the integrals in Eq. (1) are dominated by the
low frequency behavior of S(ω;v) and G(k, za, ω), result-
ing in the power-law dependency on velocity and sepa-
ration [31]. The relative difference between the full non-
equilibrium and LTE results is more than 80% in this re-
gion (see inset of Fig. 2). At high velocities (v/c & 10−3

for the parameters in Fig. 2) we observe a crossing be-
tween the previous asymptotic expressions and

F
(2)
fric ≈ −

~ω4
spα0

πc4
Γ

16ε0

×

√√√√√ (
ωa

ωsp

)7
π
(ωspza

c

)5 ( v
c

)3 (1 +
5v

2zaωa

)
e−

2zaωa
v (16)

(black dashed curve in Fig. 2), where ωsp = ωp/
√

2 is
the surface plasmon frequency. Equation (16) is the re-
sult of a second-order perturbative expansion of Eq. (1),
and can be explained by a resonant process involving
the atom-surface interaction [28], for which the radiative
damping is neglected. This process is dominant right
after the crossing, as exemplified by the very good agree-
ment between Eq. (16) and the numerical evaluation
of quantum friction in this range of velocities. It indi-
cates that the atom and the surface are uncorrelated to
a good approximation and hence that, in contrast to the
lower-speed region, for these velocities the LTE descrip-
tion is sufficient to completely characterize the quantum
frictional process. This is also clearly seen in the sharp
decrease of the relative difference between the exact and
LTE results (see inset of Fig. 2). In Fig. 2 one can
see, however, that further increase of the velocity leads
again to a deviation from the LTE approximation due to
the strengthening of the non-equilibrium-induced atom-
surface correlations.

Due to its small value, an experimental detection of
quantum friction is challenging and designing setups that
increase the strength of the interaction is certainly desir-
able. Specifically, Eq. (15) can be rewritten as

F̄fric ≈ −
216

5π
~γ2(za)

v3

(2zaωa)4
, (17)

where γ(za) = α0ω
2
aρ/(4πz

3
a) is the leading-order (i.e.,

low-frequency and small-velocity) expansion of the func-
tion γ(ω;v) defined in equation (8b). This demonstrates
that, at low velocities, quantum friction is proportional to
the square of the induced decay rate. This feature sug-
gests possible pathways to increase the strength of the
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FIG. 2: Velocity dependence of the (normalized) quantum
friction of a harmonic oscillator that moves with velocity
v above a metallic surface described by the Drude model.
The dipole is oriented along one of the directions for which
d2x = d2y = d2z, e.g. (1/

√
3, 1/
√

3, 1/
√

3). The oscillator has
a resonance frequency ωa/ωsp = 0.2 and moves at a distance
zaωsp/c = 0.05 above and parallel to the surface with dissi-
pation rate Γ/ωsp = 0.1. At low velocities the LTE approxi-
mation underestimates the frictional force by approximately
80% (see inset). As the velocity increases (v/c & 10−3 for
the parameters above), the oscillator’s radiative damping be-
comes less relevant and the force is accurately described by
the asymptotic expression given in Eq. (16) (dashed black
line), which corresponds to γ → 0. A further increase in
the velocity enhances the non-equilibrium contribution to the
force and a deviation from the LTE description occurs again
(see inset). The normalization is F0 = −3~ω5

spα0/(2πε0c
4).

For a 87Rb atom (α0 = 5.26× 10−39 Fm2 [42]) and a plasma
frequency ωp = 9 eV, we have F0 = 0.31 fN.

quantum frictional force. For instance, material prop-
erties or geometric configurations, such as hyperbolic
nanostructures [43], which are known for producing large
Purcell factors, are potentially favorable for enhancing
the quantum frictional force.

In conclusion, we have shown that the local ther-
mal equilibrium approximation fails in quantum friction.
We demonstrated this point with an exact solution to
a model of a harmonic oscillator moving parallel to a
surface, in which the LTE approach underestimates the
quantum friction force by approximately 80%. Motion-
induced atom-surface correlations are ultimately respon-
sible for the breakdown of the local equilibrium assump-
tion. It is worth emphasizing that, despite its extensive
and often reasonable application, the LTE approximation
relies more on phenomenological considerations than on
quantitative estimations. Our results in quantum friction
call for a critical assessment of the range of applicability
of local thermal equilibrium in other non-equilibrium dis-
persion interactions. Such an analysis could potentially
provide new insights and unravel important features of
these and other non-equilibrium systems.
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