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Ferroelectricity usually fades away as materials are thinned down below a critical value. We reveal
that the unique ionic-potential anharmonicity can induce spontaneous in-plane electrical polarization
and ferroelectricity in monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se). An
effective Hamiltonian has been successfully extracted from the parameterized energy space, making
it possible to study the ferroelectric phase transitions in a single-atom layer. The ferroelectricity in
these materials is found to be robust and the corresponding Curie temperatures are higher than room
temperature, making them promising for realizing ultrathin ferroelectric devices of broad interest.
We further provide the phase diagram and predict other potentially two-dimensional ferroelectric
materials.

Ferroelectrics, particularly the thin-film form that is
most commonly needed for modern devices, is plagued
by a fundamental challenge: the depolarization field -
an internal electric field that competes with and often
destroys ferroelectricity [1–3]. As a result, the critical
thickness in proper ferroelectric materials, such as per-
ovskite ones, is limited between 12 and 24 Å [4–6]. New
mechanisms such as hyperferroelectrics are proposed to
keep the polarization even in a single layer ofABC hexag-
onal semiconductors [7], but these materials have yet to
be synthesized. Layered van der Waals (vdW) materials
may provide another way to overcome this challenge. For
example, two-dimensional (2D) MoS2 was predicted to be
a potentially ferroelectric material [8]. However, its fer-
roelectric 1T structure is not thermally stable compared
to the observed 2H phase.

Bulk SnSe, a high-performance thermoelectric material
[9], exhibits giant anharmonic and anisotropic phonons
[10–13], which are usually the signs of spontaneous sym-
metry breaking. In particular, monolayer structures of
this MX (M=Ge, Sn; X=S, Se) family are predicted to
own giant piezoelectricity [14, 15] and, particularly, their
electrical polarization displays a nonlinear response to
applied strain [14]. All these clues motivate us to in-
vestigate if these materials are spontaneously polarized
and ferroelectric. From the point view of fabrication,
ultra-thin trilayers of these materials have been success-
fully fabricated [16], making the study of monolayers of
immediate interest. Last but not least, the relation be-
tween phase transitions and dimensionality has been a
century-long topic [17, 18]. Beyond intensive studies on
bulk ferroelectric phase transitions [1, 19–21], ferroelec-
tric phase transitions in 2D materials and their critical
phenomena are obviously of fundamental importance.

In this work, we show that MX (M=Ge, Sn; X=S,
Se) monolayers are a new family of 2D ferroelectric
vdW materials. Using first-principle calculations [22–28],
we identify two degenerate structures exhibiting sponta-
neous in-plane polarization. Moreover, we build an effec-
tive Hamiltonian to investigate the phase transition via

FIG. 1. (Color online) (a) Top view of the structure of mono-
layer group-IV monochalcogenides. The black line rectangle
is the first Brillouin zone, a is the lattice constant along the
armchair direction (x), and b is that along the zigzag direc-
tion (y). (b) The schematic side views of the two distorted
degenerate polar structures (B and B’) and the high symme-
try non-polar phase (A). (c) The free-energy contour plot of
monolayer SnSe according to the tilting angles (θ1 and θ2).
The phases A, B, and B’ are marked.

Monte Carlo (MC) simulations [22]. The calculated Curie
temperatures (Tc) are above room temperature, making
these materials promising for experiments and ultra-thin
ferroelectric devices. We further demonstrate that this
2D ferroelectric phase transition obeys the fourth-order
Landau theory but with different critical exponents from
those of the typical second-order phase transition [29].
Finally, we obtain the phase diagram of monolayer SnSe,
showing that minor strain can dramatically tune Tc. By
computing covalency and cophonicity metrics, we show
the correlation between the ionic-covalent bonds with
spontaneous polarization and Curie temperatures, which



2

TABLE I. The ground-state free energy (potential barrier)
EG(meV ), the spontaneous polarization Ps (10−10C/m) at
zero temperature, and fitted parameters in Eq. 1. A, B, and
C are used to describe the double-well potential. D is the
constant representing the mean-field approximation interac-
tion between the nearest neighbors.

Material EG Ps A B C D
SnSe -3.758 1.51 -5.785 1.705 0.317 10.16
SnS -38.30 2.62 -19.127 1.053 0.275 8.49

GeSe -111.99 3.67 -15.869 -3.540 0.378 9.74
GeS -580.77 5.06 -37.822 -5.422 0.280 10.59

may give hope to the search for new 2D ferroelectric ma-
terials.
Bulk MX (M=Ge, Sn; X=S, Se) adopts a layered or-

thorhombic structure (space group Pnma) at room tem-
perature, which is derived from a three-dimensional dis-
tortion of the NaCl structure (space group Cmcm)[9].
Their monolayer structures keep this symmetry [22, 30],
as shown in Fig. 1 (a). From the side view, we define
the angles θ1 and θ2 measured along the x (armchair)
direction shown in Fig. 1 (b), which describes the ge-
ometric distortion. When θ1 = θ2 = 0, the structure
converts back to the non-polar Cmcm (phase A) with
the inversion symmetry, which is actually the structure
of the crystalline insulator materials, SnTe and PbTe,
etc. [22, 31].
For monolayer MXs, there are two stable structures

which are related by a spatial inversion, characterized by
having both θ1 and θ2 positive or both negative. These
structures, labeled by phases B and B’, are shown in
Fig. 1(b). Taking monolayer SnSe as an example, the
free-energy contour obtained using first-principle calcu-
lations is presented in Fig. 1 (c), which confirms these
stable structures (B and B’) are connected through a
saddle point (A). This anharmonic double-well potential
strongly hints the existence of ferroelectricity.
Importantly, both B and B’ structures are non-

centrosymmetric polar, and they can be transformed into
another by a spatial inversion. Therefore, if there is a po-
larization (P ) in the B phase, that of the B’ phase must
be the inverse (−P ). Our Berry-phase calculation based
on density functional theory (DFT) confirms this sym-
metry analysis: these two stable structures (B and B’)
have significant spontaneous polarization with opposite
polarizing directions. The spontaneous polarization at
zero temperature (Ps) are listed in Table I. If we estimate
the thickness of each layer to be 0.5 nm [9], their aver-
age bulk values of the polarization are around 0.3 ∼ 1.0
C/m2, which are similar to those of traditional ferroelec-
tric materials such as BaT iO3 and PZT [21, 32, 33].
Soft optical modes correspond to displacive instabili-

ties and have been assigned to be the driving mechanism
for spontaneous symmetry breaking in bulk ferroelectrics
[34]. As temperature decreases below Tc, the frequency

FIG. 2. (a) and (b) are phonon spectra of the structures A
and B of monolayer SnSe, respectively. (c) Double-well poten-
tial of monolayer SnSe. Red points are the DFT-calculated
total energy and blue line is from the model. (d) Double-
well potential vs polarization. EG is the ground-state energy
(potential barrier) and Ps is the spontaneous polarization.

of the soft mode will evolve to be imaginary, driving the
high-symmetry structure to a symmetry-broken phase.
We have observed the similar phenomenon. For exam-
ple, in monolayer SnSe, we plot the phonon dispersions
for both the non-polar phase A and polar phase B (Fig.
2 (a) and 2 (b)). Clearly there is an imaginary, soft op-
tical mode (λ) presenting, and it is corresponding to the
symmetry breaking below Tc.
Beyond the calculation of ferroelectricity at zero tem-

perature, a more fundamental question is the correspond-
ing ferroelectric phase transition, which has been inten-
sively studied for decades in bulk materials [1, 20, 34–
38]. This is an open question for monolayer monochalco-
genides because of their 2D nature. Dimensionality is
a key factor deciding phase transitions. In particular,
lower dimensionality usually enhances fluctuations, de-
creasing or even diminishing phase transitions. There-
fore, even with a finite configurational potential barrier
(Fig. 1 (c)), it is unknown if such a ferroelectric order can
survive (robust) at finite temperature in 2D materials.
This is also crucial for potential devices working at room
temperature. In the following, we build a quantitative
approach to study the 2D ferroelectric phase transition
beyond zero-temperature DFT calculations.
Although the aforementioned soft optical mode is the

driving mechanism for the ferroelectric phase transition,
it is not easy to describe these modes at finite temper-
ature. Moreover, techniques for treating higher-order
anharmonic phonons, which are crucial to induce phase
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transitions, are limited. One approximation of investi-
gating the imaginary modes is to employ the so-called
renormalization scheme to calculate the effective har-
monic frequencies at finite temperature [11]. However, in
that scheme, it is hard to distinguish different dimension-
alities, which is the essential feature for 2D ferroelectric
phase transition.
Alternatively, we describe our system by the Landau

theory. The polarization P is the order parameter. Then
we need to map the two-component (θ1, θ2) free-energy
surface (Fig. 1 (c)) to a function of the order parame-
ter P . However, a brute-force 2D mapping will result in
formidable simulation. Fortunately, we observe that due
to the steep gradient of the energy surface along the per-
pendicular direction to the dashed diagonal line in Fig.
1(c), the structure prefers to stay the so-called angle-

covariant phase (θ1 = θ2), marked by the dashed line
in Fig. 1 (c) (details in sections 4 and 5 of the supple-
mentary material) [22]. This makes it possible to only
consider a 1D subset of configurations and greatly sim-
plifies the parameter space.
In Fig. 2 (c), we show the energy along this angle-

covariant line, θ1 = θ2 = θ, for monolayer SnSe. Its
double-well shape suggests the known form of the φ4 po-
tential, which has been widely used to study bulk ferro-
electric materials [21, 39]. By calculating the polarization
for each value of θ, we can connect the free energy E to
the polarization P .
The potential energy is expressed in the Landau-

Ginzburg expansion

E =
∑

i

A

2
(P 2

i ) +
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4
(P 4

i ) +
C

6
(P 6

i ) +
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∑

<i,j>

(Pi − Pj)
2,

(1)

which can be viewed as the Taylor series of local struc-
tural distortions with a certain polarization defined at
each cell Pi. As shown in Fig. 2 (d), the first three terms
are associated with the energy contribution from the local
modes up to the sixth order and they well describe the an-
harmonic double-well potential. The last term captures
the coupling between the nearest local modes and in-
cludes the 2D geometry that is crucial for differentiating
this work from previous bulk studies. Compared with the
results of mean-field theory within the nearest-neighbor
approximation (Fig. 3 (a)), the first-principle calcula-
tions of supercells shows that the coupling is harmonic,
confirming the validity of keeping the second-order inter-
actions in Eq. (1). The values of the parameters A-D are
listed in Table I. Interestingly, the value for D, describing
the average dipole-dipole interaction, is almost the same
across these four materials. This is from the similar local
structures of these materials.
With this effective Hamiltonian and parameters, we

can employ the MC simulation to investigate the phase
transition. In Fig. 3 (b), take monolayer SnSe as an ex-
ample, we show there is an abrupt transition at Tc ≈ 325

FIG. 3. (Color online) (a) The dipole-dipole interaction of
monolayer SnSe by using mean-field theory. Those red points
are the DFT-calculated total energy of different Pi− < Pj >.
The blue line is fitted by the harmonic approximation. (b)
Temperature dependence of polarization obtained from MC
simulations of monolayer SnSe.

K. To obtain the critical exponents and understand uni-
versal critical phenomena, we employ a fitting procedure
that assumes a heuristic form for P (T ):

P (T ) =

{

µ(Tc − T )δ T < Tc

0 T > Tc

(2)

where Tc is the Curie temperature, δ is the critical expo-
nent, and µ is a constant. These fitted results of mono-
layer MX are summarized in Table II. The critical expo-
nents are around 0.25 and 0.35, which are significantly
below the ideal value (0.5) based the 2D ferromagnetic
Ising model [29]. This is similar to the conclusion from
bulk ferroelectric perovskites [21]. In this sense, our
study is still not enough to identify the type of this phase
transition and it is an extremely interesting question for
future studies by further observing the hysteresis in heat-
ing and cooling [40].
In Table II, the Curie temperature Tc of monolayer

GeS and GeSe are rather large; this is consistent with
their higher configurational energy barriers (EG in Table
I), indicating that GeSe and GeS have strong ferroelec-
tric instability. On the other hand, the smaller Tc of
monolayer SnSe and SnS show they have weak ferroelec-
tric instability, which can be easily tuned by external
field or strain. This is also consistent with our previ-
ously work showing a nonlinear polarization response in
strained SnSe and SnS [14].
It is important to point out that the Curie tempera-

ture Tc cannot be simply estimated by the configurational
energy barriers. For example, the barrier of the double-
well potential |EG| of SnSe (3.758 meV ) is much smaller
than its kBTc (28.02meV ). This can be explained by the
fourth-order Landau theory, which has been used to un-
derstand the ferroelectricity of perovskites [41]. In this
scheme, the free energy can be written as

F = α(T − Tc)P
2 + βP 4 (3)
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TABLE II. The Curie temperature (Tc) and critical exponents
in Eq. 2.

Material Tc (K) µ δ
SnSe 326 0.34 0.25
SnS 1200 0.21 0.35

GeSe 2300 0.48 0.26
GeS 6400 0.75 0.22
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FIG. 4. (Color online)(a) Curie temperature vs the sponta-
neous polarization. The blue points and error bars are MC
simulations and the red line is the fitted result using the model
function in Eq. 4. (b) Phase diagram of monolayer SnSe
under strain. (c) M-X bond covalency CM,X vs cophonicity
Cph(M−X) with different covariant angles. (d) Curie Tc and
spontaneous polarization Ps vs M-X bond covalency CM,X .
(e) Polarization at zero temperature vs the layer number of
MXs.

with α,β > 0. The equilibrium polarization is given by
dF/dP = 0, resulting in the Curie temperature

Tc =
2β

α
Ps

2 (4)

Excitingly, we fit the calculated spontaneous polariza-
tion of monolayer SnSe and find Tc ∼ P 2

s , which per-
fectly matches the Landau theory, similar to traditional
perovskite ferroelectric materials [21, 42]. More precisely,
the coefficient, 2β/α, is about 11.09 meV/(10−10C/m)2,
which is very close to the interaction constantD of mono-
layer SnSe listed in Table I. Therefore, a material with

weak instability may nevertheless display relatively high
Tc determined by high values of dipole-dipole coupling D
and the spontaneous polarization Ps. This may be partic-
ularly interesting for suspended 2D ferroelectric materi-
als because the surround vacuum cannot efficiently screen
the dipole-dipole interaction, enhancing the coefficient in
in Eq. 4 and further increasing the Curie temperature.

Phase diagram is particularly important for completely
describing ferroelectricity in monolayers because the 2D
materials are easily affected by substrates [43, 44], fabri-
cations, and temperature [45]. For monolayer, it is hard
to define the in-plane pressure. Equivalently, we provide
a phase diagram, in which we vary the two orthogonal lat-
tice constants (a and b) that can be related to strain and
calculate the corresponding Curie temperature. (See the
section 5 of the supplementary document) [22] As an ex-
ample, the phase diagram of monolayer SnSe is presented
in Fig. 4 (b). Interestingly, the ferroelectric transition
temperature could be tuned in a wide range (a few hun-
dred Kelvins) by very small strain (within ±1%) along
the x(armchair) direction. This widely tunable range,
without insulator-metal transition [45], suggests poten-
tial deviations for experimental measurements and it is
also promising for the engineering ferroelectricity.

Understanding the correlation between structure dis-
tortions, spontaneous polarization, and chemical bonding
nature is important for predicting new ferroelectric ma-
terials. Here we investigate covalency and cophonicity
metrics (more details in section 7 of supplement) pro-
posed by Cammarata et al. [46, 47], which are useful
tools for analyzing structural distortions and ferroelec-
tricity. We show the M-X bond covalency CM,X vs the
MX cophonicity Cph(M −X) in Fig. 4(c). Although the
covalencies have the different monotonic behaviors with
respect to the cophonicity Cph(M − X), the cophonic-
ity approaches a perfect cophonocity (Cph(M −X) = 0)
when the phase is varied from the structure A to the more
stable and polar structure B. Thus cophonicity may be
a useful quantity for predicting stable ferroelectric struc-
tures. In Fig. 4(d), we show the covalency CM,X accord-
ing to the polarization and the critical temperature. In-
terestingly, we find that the more ionic material (smaller
CM,X) has smaller Ps and lower Tc. This rule is consis-
tent with the fact that the heavy compound SnTe (ionic
NaCl type structure) is not a spontaneous polarization
material. According to this rule, we expect that the less
covalent MX, such as monolayer SiS [48] and As1−xPx

compound [49, 50] may have higher spontaneous polar-
ization and Curie temperatures.

Finally, beyond monolayers, it is necessary to men-
tion few-layer monochalcogenides, given the fact that tri-
layer SnSe have been fabricated [16]. Because of the
restored inversion symmetry, the polarization of even-
number-layer MXs is always zero. In Fig. 4 (d), we show
the spontaneous polarization of odd-number-layer MXs,
in which the 2D polarization (C/m) is renormalized to
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bulk values (C/m2). Interestingly, although polarization
of the odd-number layers MXs decays with the increas-
ing thickness, the Ps of five-layers SnSe is still around
0.08 C/m2 (=8 µC/cm2), which is comparable to those
of paraelectric Barium Titanate [51] and BaT iO3 mul-
tiferroic nanostructures [52]. Thus it is possible to ob-
serve the ferroelectricity in currently available few-layer
monochalcogenides [16].

In conclusion, we predict that monolayer/odd-number-
layer group-IV monochalcogenides are ferroelectric mate-
rials with in-plane spontaneous polarization. The Curie
temperatures are significantly higher than their con-
figurational energy barriers between their degenerated
ground-state structures. These properties indicate that
monolayer MXs are robust ferroelectric materials, which
could be useful for devices. The revealed mechanism
of the ferroelectric phase transition, explained by the
Landau theory, takes us closer to understand the uni-
versal critical properties of 2D materials. Furthermore,
the widely-tunable Curie temperature of these monolay-
ers under small strain gives more freedom for engineer-
ing ferroelectric devices. Finally, based on our covalency
analysis, new materials, such as SiS [48] and As1−xPx,
are predicted to be higher Ps andTc.
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