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Nonsymmorphic symmetries like screws and glides produce electron band touchings, obstructing the forma-
tion of a band insulator and leading instead to metals or nodal semimetals even when the number of electrons
in the unit cell is an even integer. Here we calculate the electron fillings compatible with being a band insulator
for all 230 space groups, for non-interacting electrons with time-reversal symmetry. Our bounds are tight –
that is we can rigorously eliminate band insulators at any forbidden filling, and produce explicit models for all
allowed fillings – and stronger than those recently established for interacting systems. These results provide
simple criteria that should help guide the search for topological semimetals and also have implications for both
the nature and stability of the resulting nodal Fermi surfaces.

Introduction. — Recent advances in the understanding of
topological phases of matter have rekindled the interest in
the interplay between electron filling and electronic phases
of matter. When is a system of electrons insulating? For
non-interacting electrons in the presence of time-reversal (TR)
symmetry, basic band theory dictates that a band insulator (BI)
is possible only if the electron filling ν, defined as the average
number of electrons per primitive unit cell, is an even integer.

Since all crystals possess space group (SG) symmetries, it
is of fundamental importance to ask whether the filling con-
straints are tightened due to the crystal structure, i.e. do the ex-
tra spatial symmetries forbid BIs even when ν ∈ 2N? When
spin-orbit coupling (SOC) is negligible, it has long been es-
tablished that nonsymmorphic symmetries can enforce certain
patterns of band degeneracies and lead to tighter filling con-
straints [1, 2]. Numerous recent works also pointed out that
these nonsymmorphic filling constraints survive even when
spin-rotation invariance is broken by SOC [3–13]. Weakly-
correlated materials forbidden to be insulating by such tight-
ened filling constraints tend to favor nodal semimetals — elec-
tronic systems with Fermi surfaces of reduced dimensionality
and consequentially feature low-energy excitations with un-
conventional dispersion.

Similar filling constraints have also been derived for inter-
acting systems using various non-perturbative methods [14–
19]. However, none of the previous works provide tight con-
straints for all 230 SGs — in our recent work on interacting
systems [18], we could only prove the tightness of the filling
constraints for 218 SGs. That is, for the remaining 12 SGs at
certain fillings, there was neither a general argument forbid-
ding an insulator, nor an explicit construction of an insulating
ground state.

Here we report the results from a comprehensive study of
filling obstructions to realizing non-interacting TR-invariant
BIs for all 230 SGs, with or without SOC. Our key result is
summarized in Table I, which tabulates the set of electron fill-
ings SBI

G compatible with a TR-symmetric BI in any given SG
G. [See Tables S1, S2 of Supplementary Materials (SM) [20]
for an expanded version]. Compared to the interacting results
presented in [18], the current work serves as an independent

verification of the tight filling constraints for 218 SGs using
band-theory analysis, and provides the tight bounds for the re-
maining 12 SGs in the non-interacting limit. In addition, the
band-theory arguments presented here form the basis for fur-
ther k ·p effective Hamiltonian analysis, which constrains the
generic dispersion about the degeneracy point [13, 21–23]. In
contrast, our previous interacting argument does not constrain
the spectrum of low-energy excitation.

Before we move on to presenting the results we comment
on how such tight filling constraints for all possible crystal
structures should be useful for materials design and screen-
ing. Materials with ν 6∈ SBI

G are necessarily (semi-)metallic
or strongly interacting. At the same time, since the Luttinger
volume of a system with any even filling ν = 2n is zero, no
Fermi surfaces are required [19, 24, 25]. The simplest Fermi-
ology that has vanishing Luttinger volume, but at the same
time is not an insulator, is a nodal point. Such systems are
attractive candidates for realizing nodal semimetals, although
we should note that other outcomes involving compensated
Fermi surfaces are also admissible. Therefore the tight fill-
ing constraints we presented should be viewed as a general
guide to help narrow down the search space to materials with
a combination of SG symmetries and fillings that naturally fa-
vor nodal semimetals.

Actually, it may be worth noting that in spin-orbit-coupled
systems lacking inversion symmetry, a similar argument on
the Fermiology applies even when ν = 2n + 1. Convention-
ally this filling is associated with a large Fermi surface, en-
compassing half the Brillouin zone; in the presence of SOC,
however, the individual spin components cannot be distin-
guished and the Luttinger volume constraint only applies to
the total number of electrons. Hence one could in principle
realize a nodal semimetal at such fillings. However, if SOC is
negligible or when the crystal is centrosymmetric, each band
is doubly degenerate and the Luttinger’s count is effectively
halved. Consequentially, unless both spatial inversion and
spin-rotation symmetries are strongly broken, such systems
typically possess two big Fermi surfaces each enclosing ap-
proximately half of the first Brillouin zone.

Let us mention some examples of existing materials that
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TABLE I. The list of fillings SBI
G corresponding to TR symmet-

ric BIs in the presence / absence of SOC. mN represents the set
{m, 2m, 3m, · · · } and A \ B means deleting elements of B from
A. SAI

G ’s are the corresponding fillings for AIs. ∩Γ≤G(SBI
Γ /vG,Γ) is

the tightest constraints obtainable from Bieberbach subgroups Γ.
G (ITC No.) SBI

G×SU(2) = SAI
G SBI

G ∩Γ≤G(SBI
Γ /vG,Γ)

1 2N 2N 2N
4, 7, 9 4N 4N 4N

144'145 6N 6N 6N
19, 29, 33, 76'78 8N 8N 8N

169'170 12N 12N 12N
73, 106, 110, 133,

8N 8N 4N
135, 142, 206, 228

199, 214 4N \ {4} 4N 4N
220 4N \ {4, 8, 20} 4N \ {4} 4N
230 8N \ {8} 8N 4N

all other SGs 2|WGa |N 2|WGa |N 2|WGa |N

illustrate how our results apply. The proposed nodal-ring
semimetal SrIrO3 [26], which has a topologically protected
nodal Fermi surface [5], has ν = 4. For this SG (62), how-
ever, the allowed BI fillings are SBI

62 = 8N, hence the necessity
of at least nodal points at the lower filling. Now consider the
stability of this nodal structure to a symmetry-lowering dis-
tortion G → G′. If SBI

G = SBI
G′ , the nodal Fermi surface is

guaranteed to be protected from a full gapping out, although
it can change from, say, a collection of nodal lines to nodal
points. Conversely, if ν ∈ SBI

G′ , a possibly nontrivial BI, such
as a topological (crystalline) insulator, is in principle achiev-
able via such distortion.

Identification of special SGs. — We start by identifying
some simple rules that reduce the analysis to a small number
of special SGs. Consider a class of system X satisfying cer-
tain defining properties, like SG symmetries . We will be in-
terested in SX , the set of electron fillings (defined with primi-
tive unit cell) for which a BI in class X is possible. Imagine a
‘less constrained’ class X ′ for which we lift some of the con-
straints imposed on X . By definition, a BI lying in class X
also lies in class X ′, but the converse is not necessarily true.
So the sets of fillings satisfy SX ⊆ SX′ provided the filling is
defined with respect to the same unit cell on the two sides.

Such relations will greatly reduce the work required to es-
tablish the BI filling bounds for all 230 SGs. For instance, if
SG G′ is a subgroup of G, systems symmetric under G′ belong
to a ‘less-constrained’ class compared to those symmetric un-
der G. Therefore, we get an ‘upper’-bound, SBI

G ⊆ SBI
G′/vG,G′

for G′ < G. The factor vG,G′ ≥ 1 is needed because G′ and
G may have different unit cell volumes. For instance, if G
differs from G′ only by a body-centered translation, we have
vG,G′ = 2. More generally, vG,G′ = |TG/TG′ |, where TG is
the translation subgroup of G [27].

Atomic insulators (AIs) are special instances of BIs in
which each electron is tightly localized to a single atomic or-
bital, or which can be smoothly deformed to such a configura-

tion while preserving the symmetries. This is a restriction on
the phase, and thus SAI

G ⊆ SBI
G for the same G, establishing a

useful ‘lower’ bound. Whenever the upper and lower bounds
agree with each other, i.e. SAI

G = SBI
G′/vG,G′ for some G′ ≤ G,

one obtains the tight constraint SBI
G = SAI

G .
At first sight, it may appear nontrivial to deduce SBI

G from
this approach, since (i) one would still need to determine SAI

G ,
and (ii) there are numerous subgroup G′ for any G, and it
is unclear which G′ will provide maximal information about
SBI
G . Fortunately (i) can be accomplished with little effort:

by definition a TR-symmetric AI can be smoothly deformed
into a phase with Kramers pairs of electrons localized to well-
defined points in space, and these points must form a SG sym-
metric lattice. Such lattices are classified under the ‘Wyck-
off positions’, which are exhaustively tabulated in [28]. Each
Wyckoff positionWGw (w = a, b, . . . ) corresponds to a lattice
with some number of points within each primitive unit cell,
which we denote by |WGw|. Thus SAI

G is spanned by adding
together arbitrary multiples of 2|WGw| (see Sec. II of SM).

For (ii), we take advantage of nonsymmorphic symme-
tries, which generally require extra band crossings and lead
to tighter bounds on SBI

G [2]. To systematically study the ef-
fects of nonsymmorphic elements of G, we first consider a
special class of SGs that contains only screws, glides, and
translations. When acting on R3 such groups are fixed-point
free, i.e. r 6= g(r) for any pair of r ∈ Rd and g ∈ G un-
less g is the identity, and are known as ‘Bieberbach’ groups.
Up to chirality there are only 10 such SGs in 3D [28]: 1,
4, 7, 9, 19, 29, 33, 76(P41)'78(P43), 144(P31)'145(P32),
169(P61)'170(P65). (To avoid possible confusions, we de-
note a specific SG by its SG number used in [28] in bold italic
face.)

In Sec. IV of SM, we establish that SAI
Γ = SBI

Γ for each
of the 10 Bieberbach groups Γ (the first row of Table I). The
10 Bieberbach groups then serve as an anchor for most of the
analysis. In particular, for many SGs G there exists a Bieber-
bach subgroup Γ ≤ G satisfying SAI

G = SBI
Γ /vG,Γ, which

therefore establishes a tight bound on SBI
G . In fact, determin-

ing SAI
G and SBI

Γ allows us to derive SBI
G for 218 out of the 230

SGs [entries in Table I with SAI
G = SBI

G = ∩Γ≤G(SBI
Γ /vG,Γ)].

The 12 remaining SGs require a case-by-case study, though
there are still group-subgroup relations among them that we
can use to our advantage. With that, our main result can be
tersely summarized as: For spinful electrons symmetric un-
der both TR and SG G, SBI

G = SAI
G unless G belongs to one of

the following four exceptions: 199, 214, 220 and 230. These
four exceptions allow for BIs even when no AI is possible at
the same filling, and their topological properties are the focus
of another study [29].

Lastly, we address the case of systems with SU(2) spin-
rotation invariance, relevant when SOC is negligible. The fill-
ing constraints satisfy SAI

G×SU(2) ⊆ SBI
G×SU(2) ⊆ SBI

G . Since
each entry in SAI

G corresponds to localizing an even number
of electrons on each site, one can as well imagine putting
them into a spin-singlet wavefunction, i.e. SAI

G×SU(2) = SAI
G .
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Again by composing these relations, we have SBI
G×SU(2) = SBI

G
whenever SBI

G = SAI
G . Hence, to establish the complete list of

SBI
G×SU(2) one simply studies the four SGs with SBI

G 6= SAI
G .

The result is: For spinful electrons symmetric under TR, SG
G, and spin rotation, SBI

G×SU(2) = SAI
G for all 230 SGs.

Band theoretical analysis for 73. — We have reduced the
analysis to that of the 10 Bieberbach SGs Γ, and the 12 SGs
for which knowledge on SAI

G and SBI
Γ alone does not guar-

antee tightness of the bounds on SBI
G . The filling constraints

for some of these SGs, like those with a single screw or glide,
have been derived in the literature [2–13]. As briefly reviewed
in Sec. III of SM, the main strategy is to derive the little group
irreducible representations (irreps) at the high symmetry mo-
menta, and then study the compatibility between irreps con-
nected by high symmetry lines. Such analysis, however, can
become quite technical when the SG possesses a larger num-
ber of symmetries. Instead of presenting all the arguments for
the 10 + 12 SGs mentioned above, here we focus only on 73
in the presence of SOC, which illustrates the key ingredients
needed to derive filling constraints for a SG with multiple non-
symmorphic symmetries and extra point group symmetries.
We refer the interested readers to Sec. IV and V of SM for
a detailed discussion on all the other SGs and the cases with
spin-rotation invariance.

73 (Ibca) is centrosymmetric (i.e., contains the spatial in-
version P ) and belongs to the body-centered orthorhombic
system. It is generated by P and (two of the) three orthog-
onal screws Sα ≡ TταRα,π with α = x, y, z. Rα,θ repre-
sents the anti-clockwise rotation by angle θ around the posi-
tive α-axis; Tt represents the translation by t, where for the
screws we have τx = (1/2, 1/2, 0), τy = (0, 1/2, 1/2) and
τz = (1/2, 0, 1/2).

We first study the constraints arising from the screws. Sz is
a symmetry of the Bloch states along the line k = (π, π, kz),
which connects two high-symmetry points k = (π, π, 0) (a
time-reversal invariant momentum) and (π, π, π) (not time-
reversal invariant due to the body-centered structure). Since
S2
z = T(0,0,1)Rz,2π and 2π-rotation is −1 for a spin-1/2

electron, the allowed eigenvalues of Sz along this line are
ξ

(l)
z,kz

= ξ
(l)
z,0e
−ikz/2 = ±ie−ikz/2 (l is the band index). At

(π, π, 0), bands with ξ(l)
z,0 = ±i are paired into Kramers dou-

blets. Assuming a BI, the two bands forming a doublet at
(π, π, 0) are either both filled or both empty. Therefore, along
the line (π, π, kz) the number of filled bands having ξ(l)

z,kz
=

ie−ikz/2 will always equal to that with ξ(l)
z,kz

= −ie−ikz/2.
The same argument, using the lines (kx, π, π) and (π, ky, π)
applies equally well to ξx,kx and ξy,ky .

Now suppose there exists a BI at ν = 2, and we focus on the
symmetry representation at (π, π, π) where all three screws
are symmetries. On the one hand, the preceding discussion
implies the two bands have opposite ξα,π , i.e. ξ(1)

α,πξ
(2)
α,π = −1

for each α = x, y, z. On the other hand, the screw eigenvalues
of a single band are constrained by the group relations. Since
the product of three screws satisfies SxSySz = 1, we have

Ek

+1

−1

−1

+1

(π, π, π) (0, π, π)

ξx,kx
: +1 → +i

−1

−1

+1

+1

(π, 0, π)(π, π, π)

ξy,ky
: −1 → −i

(π, π, π)

−1

+1

−1

+1
(π, π, 0)

ξz,kz
: −1 → −i

−i
+i

−i
+i −i

+i

−i
+i

−i
+i

−i
+i

FIG. 1. Typical band structure of a TR-symmetric free electron sys-
tem with SG 73. Each branch is doubly degenerate due to presence
of TR and inversion. Note that the product ξ(l)

x,πξ
(l)
y,πξ

(l)
z,π is identical

for all bands (chosen to be +1 here). The red dashed circle indicates
inevitable crossings of 4 branches (a Dirac cone), enforcing ν = 8.

ξ
(l)
x,πξ

(l)
y,πξ

(l)
z,π = ±1. Note that the sign ambiguity, originating

from the phase difference between±π rotations on spin-1/2’s,
is independent of l. We therefore require simultaneously{

(ξ
(1)
x,πξ

(2)
x,π)(ξ

(1)
y,πξ

(2)
y,π)(ξ

(1)
z,πξ

(2)
z,π) = (−1)3 = −1

(ξ
(1)
x,πξ

(1)
y,πξ

(1)
z,π)(ξ

(2)
x,πξ

(2)
y,πξ

(2)
z,π) = (±1)2 = +1

, (1)

a contradiction. More generally, the two conditions imply
each of the four 1D irreps at (π, π, π) appears the same num-
ber of times among the filled bands if the system is insulating,
and therefore SBI

73 ⊆ 4N (Fig. 1).
To derive the tight bounds for SBI

73 , however, one must uti-
lize the inversion symmetry P , which was not assumed in the
previous analysis. As is well-known, for spinful electrons the
combination of P and T leads to doubly degenerate bands ev-
erywhere in the Brillouin zone. In particular PT commutes
with Sα at (π, π, π), and hence the bands paired by PT have
the same ξ(l)

α,π . The previous argument can then be applied to
half of the bands (one from each pair). Combined with the
observation that SAI

73 = 8N, we conclude SBI
73 = 8N.

Band insulators on flat manifolds. — Here we present an
alternative derivation of SBI

G by defining the system on a non-
trivial flat manifold. For simplicity we illustrate the main idea
using G = 73 as an example, and a more general discussion is
presented in Sec. VI of SM.

Suppose we are given a system of spinful electrons in R3

symmetric under G = 73. Let us imagine putting the sys-
tem on one of the 10 compact flat manifolds in 3D. The most
familiar example of such manifolds is the torus, which can
be obtained by imposing periodic boundary conditions. In
doing so, we (implicitly) take a translation subgroup Γ(0)

of 73 generated by TLα̂ = S2L
α , and identify r ∈ R3 by

r ∼ r + L(l,m, n), with the two sides related by any
TLlx̂ TLmŷ TLnẑ = TL(l,m,n) ∈ Γ(0). Here, L is the linear di-
mension of the torus R3/Γ(0) and should be chosen much
larger than the microscopic lattice constant 1. To define the
Hamiltonian on the torus, we also need to identify electronic
creation operator ĉ†i (r) as ĉ†i (r) ∼ T̂L(l,m,n)ĉ

†
i (r)T̂−1

L(l,m,n) =

ĉ†i (r + L(l,m, n)), where the subscript i represents internal
degrees of freedom.
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Replacing Γ(0) by other fixed-point-free subgroups of 73
allows one to define the system on a nontrivial flat mani-
fold. Here we choose a subgroup Γ = 19 generated by
S̃α ≡ TLταRα,π with an odd integer L � 1. Note that, for
instance, S̃x = T(L2 ,

L
2 ,0)Rx,π = (Sy)L−1(Sx)L. The spatial

points are identified as before, i.e. r ∼ γ(r) for all γ ∈ Γ, and
this gives the flat manifoldM = R3/Γ. The identification of
operators are, however, nontrivial:

ĉ†i (r) ∼ γ̂ĉ†i (r)γ̂−1 = ĉ†j(γ(r))(Uγ)ji. (2)

Here Ug is a unitary representation of g ∈ G, and in con-
trast to the torus case Uγ 6= 1 in general. What is slightly
complicated here is that the electron spin transforms projec-
tively under spatial symmetries, i.e., UgUg′ = ωg,g′Ugg′ for
g, g′ ∈ G, and Ug intrinsically possesses sign ambiguity. For
example, π-rotation about the α-axis can be represented by
either of e±iπ

1
2σα = ±iσα. To consistently identify opera-

tors, we need to fix the phase of Ug in such a way that Uγ
(γ ∈ Γ) is a linear (non-projective) representation of Γ ⊂ G.
Such a choice of sign is always possible in 3D if Γ is fixed-
point free [30]. For the current problem, one can freely choose
USα = ±iσα, but consistency demands UTα = U2

Sα
= −1.

The argument presented so far uses only the Bieberbach
subgroup Γ and does not rely on the non-interacting assump-
tion. Indeed the interacting bounds we presented in [18] coin-
cide with SBI

Γ /vG,Γ for all SGs. As shown in Table I, however,
SBI
G 6= SBI

Γ /vG,Γ for 10 SGs including 73. To derive the tight,
non-interacting bounds for them one must utilize the other SG
symmetries differentiating G from Γ.

Generally, an element g in G but not in Γ may not remain a
symmetry onM. The necessary and sufficient condition for
g to remain a symmetry is that

∀γ ∈ Γ, gγg−1 ∈ Γ and UgUγU
−1
g = Ugγg−1 . (3)

The first one is needed because r and γ(r), the same point on
M, should be mapped to the same point again, i.e. g(γ(r)) ∼
g(r). Similarly, the second one is to ensure the operator iden-
tification is preserved: ĝĉ†i (r)ĝ−1 ∼ ĝγ̂ĉ†i (r)γ̂−1ĝ−1. For the
problem at hand, both the rescaled body-centered translation
B = T(L2 ,

L
2 ,
L
2 ) and the inversion P are remnant symmetries.

To derive a filling constraint, we focus on the commutation
relation of B and P . They originally commute on R3 but here
we claim they must satisfy B̂P̂ = (−1)F̂ P̂ B̂ as operators
acting on Hilbert space, where F̂ is the fermion number oper-
ator. This follows from BP = TxTyTzPB and UTα = −1.
Or more explicitly,

B̂P̂ ĉ†i (r)P̂−1B̂−1 = ĉ†i (−r + (L2 ,
L
2 ,

L
2 ));

P̂ B̂ĉ†i (r)B̂−1P̂−1 = ĉ†i (−r − (L2 ,
L
2 ,

L
2 )),

(4)

and the identification rule (2) implies ĉ†i (−r + (L2 ,
L
2 ,

L
2 )) ∼

(−1)3ĉ†i (−r − (L2 ,
L
2 ,

L
2 )).

In addition toB and P , the TR symmetry T (T̂ 2 = (−1)F̂ )
is also a remnant symmetry, and it still commutes with B and

P . This algebra requires a four-fold degeneracy in the sin-
gle particle spectrum, and hence we need 4n electrons onM
to realize a BI. Since the number of unit cells contained in
M is L3

|Γ/TΓ|vG,Γ = L3

2 (see Sec. VI of SM), a BI is possi-

ble only if ν L
3

2 ∈ 4N. Recalling L is odd, one concludes
SBI

73 = 8N. Note that the nontriviality of the algebra hinges
on (−1)F̂ = −1 when acting on single-particle states, and
therefore the obstruction can in principle be circumvented in
the presence of interaction.

Outlook. — In this work we have reported the full list
of fillings for TR and SG symmetric BIs, with or without
spin-rotation invariance. The results also apply to 2D sys-
tems, since any layer group can be viewed as a ‘slice’ of
a SG [31]. Understanding the nature of the enforced band
degeneracies, the symmetry-topology protection of the nodal
Fermi surfaces, and the class of nontrivial BIs accessible by
symmetry-lowering are interesting open problems, as is the
actual prediction of new materials candidates using these in-
sights. As pointed out above, for 12 SGs we could only prove
tightness of the filling constraints in the non-interacting limit.
It remains an interesting open problem whether interaction
will enable trivial insulators at a lower filling in these sys-
tems. Another promising future direction is the extension to
magnetic SGs, pertinent for systems with magnetic ordering.
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[31] V. Kopský and D. B. Litvin, eds., International Tables for

Crystallography, 2nd ed., Vol. E: Subperiodic groups (Elsevier,
2010).

[32] M. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory
(Springer-Verlag, Berlin, 2008).

[33] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of
Symmetry in Solids: Representation Theory for Point Groups
and Space Groups (Oxford University Press, 1972).

[34] Bilbao Crystallographic Server, REPRES (2016).
[35] G. Karpilovsky, Projective Representations of Finite Groups

(Dekker, New York, 1985).
[36] G. Karpilovsky, Group Representations, Vol. 2 (North-Holland,

Amsterdam, 1993).

http://arxiv.org/abs/1603.03093
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1038/nphys2600
http://www.pnas.org/content/112/47/14551.abstract
http://www.pnas.org/content/112/47/14551.abstract
http://adsabs.harvard.edu/abs/2015arXiv150801546X
http://arxiv.org/abs/1508.01546
http://arxiv.org/abs/1508.01546
http://dx.doi.org/ 10.1103/PhysRevLett.108.266802
http://dx.doi.org/ 10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1038/ncomms5898
http://dx.doi.org/ 10.1103/PhysRevB.93.205109
http://dx.doi.org/ 10.1103/PhysRevB.93.205109
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRevLett.84.3370
http://dx.doi.org/10.1038/ncomms7593
http://dx.doi.org/10.1038/ncomms7593
http://advances.sciencemag.org/content/2/4/e1501782
http://advances.sciencemag.org/content/2/4/e1501782
http://arxiv.org/abs/1411.7799
http://arxiv.org/abs/1411.7799
http://www.cryst.ehu.es/rep/repres.html

	 Filling-enforced gaplessness in band structures of the 230 space groups 
	Abstract
	Acknowledgments
	References


