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Topological states of matter have been widely studied as being driven by external magnetic field, intrinsic

spin-orbital coupling or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall

effect (Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on the

state-of-the-art density-matrix renormalization group on cylinder geometry and exact diagonalization on torus

geometry. We first demonstrate the proposed model exhibits an incompressible liquid phase with doublet de-

generate ground states as time-reversal partners. The explicit time-reversal symmetry spontaneously breaking is

determined by emergent uniform circulating loop-currents between nearest neighbors. Importantly, the finger-

print topological nature of ground state is characterized by quantized Hall conductance. Thus, we identify the

liquid phase as a quantum Hall phase, which provides a “proof-of-the-principle” demonstration of interaction-

driven topological phase in a topologically trivial non-interacting band.

Introduction.— Topological states of matter has led to

an ongoing revolution of our fundamental understanding of

quantum materials, as exemplified by the discoveries of in-

teger quantum Hall (IQH) effect [1, 2], quantum anoma-

lous Hall (QAH) effect [3–5] and quantum spin Hall ef-

fect [6–8]. Crucially, such topological phases emerge from

non-interacting electronic structures with nontrivial topology,

where a strong magnetic field or a large spin-orbit coupling is

typically necessary. Despite great achievements, so far most

of the materials that exhibit unique topological properties can

be understood based on non-interacting physics originating

from nontrivial band physics. This limitation inspires recent

enthusiasm in exploring topological phases in “trivial” mate-

rials [9–13], without the requirement of a nontrivial invari-

ant encoded in single-particle wavefunction or band structure.

Finding such kind of novel phases can significantly enrich the

class of topological materials and is thus of great importance.

The strong correlation between electrons can dramatically

change the non-interacting physics and induce spontaneous

symmetry breakings. Therefore, many-body interaction is

expected to enable topological phases in strongly-correlated

systems by generating circulating currents and spontaneously

breaking time-reversal symmetry (TRS), which act as an ef-

fective magnetic field or spin-orbit coupling [12, 14, 15]. This

subject has undergone vigorous research due to supports from

mean-field studies followed by low-energy renormalization

group analysis [13, 16], and then the existence of such topo-

logical phases has been suggested for the extended Hubbard

model on various lattice models [17–30]. However, unbiased

numerical simulations, such as exact diagonalization (ED)

and density matrix renormalization group (DMRG) studies,

found other competing states rather than topological phases

as the true ground states in all previously proposed systems

with Dirac points [31–34] or quadratic band touching points

[35, 36]. A major obstacle is, instead of triggering the de-

sired TRS spontaneously breaking, strong interactions tend

to stabilize competing solid orders by breaking translational

or rotational lattice symmetry. Thus, the putative topologi-

cal phase is usually preempted by various competing states

[31–36]. Moreover, it is also technically challenging to detect

such kind of exotic phases with spontaneously TRS breaking,

as the TRS partners usually tend to couple together on finite-

size systems. If the intrinsic energy gap generated by TRS

breaking is small, numerical simulations can hardly distin-

guish a possible insulating topological phase from the semi-

metal phase [34]. Taken as a whole, the simple concept of

realizing interaction-induced topological phases remains un-

settled for realistic electron systems, and so far what type of

physically attainable Hamiltonians would exhibit these exotic

ground states has yet to be established.

In this paper, we provide unbiased numerical evidences of

a QAH phase generated by electron-electron interactions in

a fermion-Hubbard model on kagome lattice. By engineer-

ing electron interactions, our ED calculations signal an in-

compressible liquid phase with a doublet degenerate ground

states on torus geometry. To further investigate the nature of

this gapped phase, we perform DMRG calculation on cylin-

der geometry for larger systems. Remarkably, we show the

TRS of ground state is spontaneously TRS breaking, with

the compelling evidence from emergent long-ranged and uni-

form circulating loop-currents. The topological nature of the

ground state is identified by quantized Hall conductance, with

the help of the idea similar to Laughlin gedenkan experiment

performed numerically. Thus we establish that the essence of

the gapped phase is equivalent to the QAH phase. We also

confirm the QAH phase is robust against finite-size effects,

by accessing large systems up to the current computational

limit. Moreover, we map out a phase diagram and identify

two competing charge density wave phases by varying inter-

actions, where transitions to the QAH phase are determined to

be of the first order. Our results not only provide “fingerprint”

evidences of the interaction-driven QAH phase, but also open

up a long-sought platform for exploring topological physics in

strongly-correlated systems.

Model and Method.— We consider a spinless fermion-

Hubbard model on a kagome lattice shown in the inset of Fig.
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1(a) and described by the Hamiltonian:

H = t
∑

〈rr′〉

[

c†
r
′cr + H.c.

]

+ V1

∑

〈rr′〉

nrnr
′

+ V2

∑

〈〈rr′〉〉

nrnr
′ + V3

∑

〈〈〈rr′〉〉〉

nrnr
′ , (1)

where c†
r

(cr) creates (annihilates) a spinless fermion at site

r. We set the nearest-neighbor hopping amplitude t = 1
as energy unit here. V1, V2, V3 denote the density-density

repulsion strengths on first, second and third nearest neigh-

bors, respectively [38]. We focus on the total filling num-

ber ν = Ne/Ns = 1/3 (Ne is the total electron number and

Ns is the number of the lattice sites). In the non-interacting

limit, this model supports three energy bands and the lowest

flat band quadratically touches the second band at the Γ point

(K = (0, 0)) [37], thus the system is gapless at ν = 1/3 and

topological trivial.

In order to study the ground state phase diagram in the

{V1, V2, V3} parameter space, we implement the DMRG al-

gorithm [39, 40] combined with ED, both of which have been

proven to be powerful and complementary tools for studying

realistic models containing arbitrary strong and frustrated in-

teractions [41–47]. We study large systems up to Ly = 6
unit cells and keep up to M = 4800 states to guarantee a

good convergence (the discarded truncation error is less than

2 × 10−6). We take advantage of the recent development in

DMRG algorithm by adiabatically inserting flux to probe the

TRS spontaneous breaking and the topological quantized Hall

conductance (see [37] for computational details) [43–46].

Phase diagram.— In the presence of strong interactions,

our main findings are summarized in the phase diagram Fig.

1(a-b). In the intermediate parameter region (labeled by red),

we find a robust QAH phase emerging with the TRS sponta-

neously breaking. The QAH phase is featured by a twofold

ground state degeneracy on torus geometry, arising from two

sets of QAH states with opposite chiralities. The topologi-

cal nature of the QAH states are characterized by the integer

quantized Chern numbered C = ±1 for the TRS breaking

states with the opposite chiralities, respectively. In addition,

we also show that the QAH phase is neighboring with sev-

eral solid phases which all respect TRS: a stripe phase and

a charge density wave phase, both demonstrating distinctive

Bragg peaks in their density-density structure factors (Fig.

1(c-d)). On the contrary, the QAH phase displays a struc-

tureless feature (Fig. 1(e)) in the structure factor, indicating

the absence of the space-group symmetry breaking. Finally,

reducing V1, V2 and V3 simultaneously, we find a parame-

ter region shaded by light red in the left bottom corner in the

phase diagram Fig. 1(a-b), which is likely a weaker QAH

phase (labeled as QAH∗) as we discuss more details later.

Energy Spectrum and Double Degeneracy.— The emergent

QAH phase on a finite torus system is expected to host a two-

fold ground state degeneracy, representing two TRS sponta-

neously breaking states with the opposite chiralities as TRS

partners to each other. To examine this property for the model
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FIG. 1: Phase diagram of an extended fermion Hubbard model (Eq.

1) plotted in (a) V1 = V2 and V3 parameter space and in (b) V1

and V2 = V3 parameter space, obtained by DMRG calculations on

cylinder of circumference Ly = 6. The QAH phase is characterized

by the long-ranged current-current correlations and integerly quan-

tized Hall conductance. The phase boundary between QAH phase

and other phase is determined by the emergent loop current which

signals TRS spontaneously breaking. The contour plots of static den-

sity structure factor for: (c) charge density wave q = (0, 0) phase,

(d) stripe phase and (e) QAH phase. The white dashed line shows

the first Brillouin zone.

systems, we first investigate the low-energy spectra based on

ED calculation. As shown in Fig. 2 (a), we find two near de-

generating ground states in energy spectra for both Ns = 27
and 36 clusters [51], which are separated from the excited

levels by a finite energy gap. Importantly, the ground states

never mix with excited levels with varying the twisting bound-

ary conditions, signaling the robustness of excitation gap (see

[37]). Moreover, a stable topological phase is expected to

be protected, not only by excitation gap, but also by nonzero

single-particle gap. In Fig. 2(b), we also calculated the single-

particle gap ∆(Ns) as a function of 1/Ns, where the finite-

size scalings indicate a nonzero ∆(∞) for QAH phase.

Time Reversal Symmetry Spontaneously Breaking and

Emergent Loop Current.— To investigate the possible TRS

spontaneously breaking of the ground states, we turn to larger

systems on the cylinder geometry and obtain the ground states

by implementing DMRG calculation. Indeed, we obtain two

TRS breaking states |ΨL(R)〉 by random initializations of

wavefunctions in DMRG simulations [41], which are degen-

erating in energy as expected (as the TRS partner to each

other). Here we label different groundstates by their chi-

ral nature, where L (R) stands for “left-hand” (“right-hand”)

chirality. The corresponding TRS spontaneously breaking

of |ΨL(R)〉 can be obtained by measuring emergent currents

Jij = i〈ΨL(R)|c†icj − c†jci|Ψ
L(R)〉 between two nearest-

neighbor sites (i, j). As shown in Fig. 3 (a), local current

patternJij uniformly distributes (arrow representing direction

of current), which excludes the possibility of bond modulated
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FIG. 2: (a) Energy spectra from ED versus momentum quantum

numbers (Kx,Ky) on the Ns = 3 × 3 × 3 = 27 (red cross) and

Ns = 3 × 3 × 4 = 36 (black square) sites cluster, by setting

V = V1 = V2 = V3 and V = 3.95. The ground state degeneracy are

labeled by numbers. (b) Finite-size extrapolations of single-particle

gap ∆(Ns) = E(Ns, Ne − 1) + E(Ns, Ne + 1) − 2E(Ns, Ne)
obtained by DMRG (E(Ns, Ne) the ground state energy on Ns =
3×Nx×Ny with Ne electrons) on several lattice clusters: 3×3×4,

3× 4× 4, 3× 4× 5, 3× 5× 6.

local orders. Most importantly, local currents pattern form

loop structure circulating in the anti-clockwise direction in

each hexagon for |ΨL〉 (We have checked that the TRS partner

|ΨR〉 hosts clockwise loop current). Interestingly, the stag-

gered magnetic flux in each unit cell (enclosing one hexagon

and two triangular) averages out to zero, exactly matching the

expectation of constructed model for QAH effect [3, 16].

Moreover, we also calculate the current-current correlation

functions 〈JijJi0j0〉 in Fig. 3(b) ((ij) is the bond parallel

with the reference bond (i0j0) and the distance measured by

Rij ). We compare 〈JijJi0j0〉 for QAH phase with different

system widths. We find long-range correlations for all system
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FIG. 3: (a) Real-space plot of emergent current pattern Jij (we only

show a section of three columns on Ly = 4 cylinder), for |ΨL〉
with left chirality. The width of the bond is proportional to the

absolute value (shown on the bond as a number) and arrows point

to current directions. The red arrow indicates the current direction

in each hexagon. (b) Log-linear plot of current-current correlations

〈JijJi0j0〉 versus distance Rij −Ri0j0 for QAH phase with system

width Ly = 4 (blue square), Ly = 5 (black square) and Ly = 6 (red

square). All correlations demonstrate long-range order (and they are

also positive) for the QAH phase, while 〈JijJi0j0〉 decay exponen-

tially in stripe phase and charge density wave phase. The real-space

plot of current-current correlations is shown in Ref. [37].

widths Ly = 4, 5, 6. The current correlations keep stable with

increasing Ly , indicating the TRS spontaneously breaking is

robust against finite-size effects. In contrast, the current cor-

relations decay exponentially for stripe phase and charge den-

sity wave phase, revealing the TRS preserving in solid phases.

As last, we notice that QAH∗ phase can develop a relatively

weaker current correlation, albeit it shows sharply decaying

correlation in short-range distance.

Quantized Hall conductance.— To uncover the topological

nature of the QAH phase, we perform a numerical flux in-

sertion simulation on cylinder system [43, 47] to determine

the quantized Hall conductance σH . This simulation follows

the idea of Laughlin gedanken experiment for interpreting

IQH effect [2, 52], where an integer quantized charge will

be pumped from one edge to the other edge by inserting a

U(1) charge flux θ in the hole of the cylinder. At the DMRG

side, we adiabatically increase the inserted flux θ and use the

converged wavefunction for smaller θ as the initial state for

the increased θ to achieve adiabatical evolution of the ground

state [37, 43]. The Hall conductance can be computed by

σH = e2

h
∆Q|θ=2π

θ=0 [43, 47], where the net charge transfer

∆Q(θ) can be calculated from the net change of the total

charge in the half system: ∆Q(θ) = Tr[ρ̂L(θ)Q̂] (ρ̂L the

reduced density matrix of left half cylinder). As expected, in

Fig. 4(a), the obtained σH of QAH phase takes nearly quan-

tized value σH ≈ −1.00e2/h (for |ΨL〉) by threading a flux

quantum θ = 0 → 2π. We also checked that the TRS part-

ner |ΨR〉 hosts σH ≈ 1.00 e2

h
. In comparison, both the stripe

phase and charge density wave do not respond to the inserted

flux, therefore have exactly zero Hall conductance σH = 0
(Fig. 4(a)) consistent with the trivial topology of these states.

Furthermore, we examine the stability of the topological quan-

tization on finite-size systems. In Fig. 4(b), we show the Hall

conductance σH of the QAH phase on cylinder system with

widths Ly = 4, 5, 6, all of which give nearly quantized value

σH ≈ −1.00 e2

h
, supporting that the QAH phase is stable in

the thermodynamic limit.

Phase transition.— We address the nature of the quantum

phase transitions between the QAH phase and other phases

(see [37]). We utilize several quantities, such as groundstate

wavefunction fidelity, which are expected to signal the sen-

sitivity of the wavefunction with varying interacting parame-

ters. Moreover, we have also inspected several order parame-

ters related to TRS and translational symmetry spontaneously

breakings[37], respectively. Based on these studies, we find

that transitions between the QAH phase and the stripe phase

as well as charge density wave phase are the first order ones,

with evidences from step-like change in wavefunction overlap

and order parameters [37].

Even though the QAH phase is shown to be remarkably

robust in the phase diagram, we are less certain about the

QAH∗ phase (sitting at the left bottom corner of Fig. 1). We

do not observe TRS breaking (or long-ranged current correla-

tions) in QAH∗ phase (Fig. 3(b)). Interestingly, if we perform

flux insertion (inducing TRS breaking explicitly), we observe
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FIG. 4: Hall conductance σH obtained by Laughlin flux insertion

gedanken experiment, where σH equals to the charge transfer ∆Q

from one edge to the other edge. (a) Net charge transfer ∆Q for

QAH phase (blue circle), stripe phase (navy triangular), charge den-

sity wave (green cross) and QAH∗ phase (purple dot). The system

size is Ly = 4 cylinder. Inset cartoon illustrates adiabatically thread-

ing a U(1) charge flux in the hole of cylinder. (b) Net charge transfer

∆Q of QAH phase for different system sizes Ly = 4 (blue circle),

Ly = 5 (black square) and Ly = 6 (red diamond).

a nearly quantized Hall conductance (Fig. 4(a)), while the

evolution of the pumped charge versus flux is not as smooth

as the QAH phase. Hence, we believe that the ground state

of the QAH∗ phase is a QAH state, however with strong fi-

nite size effect (as indicated by relatively small energy gap

in Fig. 2(b)). In addition, going closer to the weak inter-

action limit, using ED calculations, we find the ground state

remains to evolve adiabatically from QAH phase to QAH∗

phase without additional quantum phase transition [37], which

is consistent with the mean-field[16, 37] and perturbative

renormalization-group[25] prediction of infinitesimal interac-

tion inducing QAH effect.

Conclusion and Outlook.— We have presented convinc-

ing evidences of an interaction-driven spontaneous quan-

tum anomalous Hall (QAH) phase in an extended Fermion-

Hubbard model on kagome lattice at one-third filling through

engineering interactions. Our complete characterization of the

universal properties of the QAH phase includes ground state

degeneracy, time-reversal symmetry (TRS) spontaneously

breaking, and the quantized Hall conductance, all of which

provide an unambiguous diagnose of a QAH phase. Such an

exotic state had been sought after for a long time, however,

its existence in a microscopic model has remained elusive un-

til now. Our current results offer a “proof-of-the-principle”

demonstration of the spontaneous QAH purely driven by in-

teractions, without the need of external magnetic field or other

mechanism of explicit TRS breaking. We believe our work

will stimulate future research along a number of directions.

For example, introducing additional degrees of freedom in

simple models usually results in richer behaviors, hence our

current model with including spin or orbital degrees will pro-

vide a promising playground for synthesising and engineering

other exotic states, such as an emergent quantum spin Hall

effect [6–8, 53] without spin-orbital coupling. Moreover, the

lowest energy band on kagome lattice is exactly flat [37, 48–

50], thus one could imagine a nearly flat band with non-zero

Chern number after the gap opening by interactions. This

would be quite significant since it may provide a platform

to realize the spontaneously fractional QAH phase or frac-

tional Chern insulators [54–61] when such flat band is par-

tially filled. At experimental side, based on the recently ex-

perimental development of artificial kagome systems [62], we

anticipate activities to realize and detect the QAH state in ul-

tracold atomic systems [63].
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Note added. During the final stages of the completion of

this manuscript, we became aware of a work claiming a QAH

phase on a checkerboard lattice based on ED calculation on

small sizes [64] (see also [65]).

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,

494 (1980).

[2] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

[3] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[4] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,

K. Li, Y. Ou, P. Wei, L. Wang, et al., Science 340, 167 (2013).

[5] C. X. Liu, S. C. Zhang and X. L. Qi, Annu. Rev. Condens. Mat-

ter Phys. 7, 301-321 (2016).

[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[7] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[8] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[9] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).

[10] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.

Rev. B 84, 235108 (2011).

[11] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7,

971-977 (2011).

[12] C. Wu and S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).

[13] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev.

Lett. 100, 156401 (2008).

[14] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413

(1989).

[15] X. G. Wen, Phys. Rev. B 44, 2664 (1991).

[16] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.

103, 046811 (2009).
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