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Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations,
in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied,
at different values of plasma β (ratio between kinetic and magnetic pressure). For single-particle
displacements, results are consistent with fluids and magnetic field line dynamics, where particles
undergo normal diffusion for very long times, with higher β’s being more diffusive. In an intermediate
time range, with separations lying in the inertial range, particles experience an explosive dispersion
in time, consistent with the Richardson prediction. These results, obtained for the first time with a
self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence
is crucial for heating, mixing and acceleration processes.

The motion of particles in complex fields has been one
of the most fascinating problems in physics, with interdis-
ciplinary applications that span from hydrodynamics to
astrophysical plasmas. The study of Lagrangian tracers
is complementary to the theory of turbulence [1] wherein
individual tracers undergo a random motion, asymptot-
ically approaching the diffusive Brownian behavior [2].
The relative motion of a pair of tracers is a different
and more subtle problem, as the growth of separation
may reflect turbulent correlations [3]. Both individual
and pair particle transport are of great importance in
applications ranging from laboratory plasmas [4, 5] to
magnetic field wandering and tangling in the galaxy [6–
8], corona [9] and interplanetary medium [10, 11]. Often
discussed in the purely diffusive limit, these varieties of
transport may also frequently display nondiffusive (su-
perdiffusive or subdiffusive) behavior (e.g., [12]). These
subjects have been studied mainly in the test-particle ap-
proximation, appropriate, for example, in describing high
energy cosmic rays [13].
When the transported particles are elements of the

thermal plasma [4, 14], the distribution is often taken as
an equilibrium Maxwellian. In this context, test-particles
and passive tracers in Magnetohydrodynamics (MHD)
have been of interest [10, 15–17]. However, for low col-
lisonality plasmas where kinetic effects typically gener-
ate strong departures from thermal Maxwellian equilib-
ria [18], one should treat the transport problem self-
consistently. We present first results on this fundamental
topic in the present Letter.
In the case of stationary random motion, a single fluid

element at position x(t) and velocity v(t) has a finite
auto-correlation time (or Lagrangian integral time)

τℓ =
1

〈v(t0)
2
〉

∫ ∞

0

〈v(t0) · v(t0 + τ)〉dτ =
Ds

〈v2〉
, (1)

where the ensemble 〈•〉 has been computed over a large
number of realizations, positions and times, and Ds is
the diffusion coefficient. The mean square displacement

of ∆s = x(t0 + τ)− x(t0), in the limit of τ ≫ τℓ, obeys

〈∆s2〉 = 2Dsτ. (2)

The above represents the long-time limit diffusive be-
havior, typical of Brownian motion. In the opposite
limit, τ → 0, in the so-called dissipative range, particles
conform to ballistic transport, governed by 〈∆s2〉 ∼ τ2

[19, 20].

Together with the asymptotic behavior of single parti-
cle motion, it is interesting to consider the motion of two
particles, as done by Richardson [3]. In this pioneering
work it was predicted that, at intermediate separations,
the inner-particle distance r2 ≡ |r1,2|

2 = |x1(τ)−x2(τ)|
2

is super-diffusive in time. Averaging over time and vol-
ume, it is observed that

〈r2〉 ∼ τ3. (3)

This motion is very rapid, explosive in time, and is
related to the mixing properties of a turbulent field.
Richardson obtained this law from basic principles, com-
puting solutions to the particle-pairs probability distribu-
tion, and using hints from observations. Note that this
work has been a precursor of Kolmogorov theory of tur-
bulence, and here will be applied to kinetic self-consistent
models of plasmas.

Single particle displacement and pair dispersion are
here investigated in plasmas, using self-consistent kinetic
models of turbulence [21–23]. We study the motion of
the plasma particles themselves, represented by elements
of the proton distribution function, in the phase-space
given by position and velocity. We will emphasize a novel
study of the particle statistics in a collisionless plasma, in
a driven turbulent state, for different plasma parameters.

Driven simulations of the hybrid-PIC model (kinetic
ions and fluid electrons) have been performed (ions here-
after are intended to be protons), in a 2.5D geometry,
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β γ τℓ τℓg Ds D
(a)
s µ χ0

Run I 0.1 1.07 11 22 2.66 2.56 1.97 0.11

Run II 0.5 1.07 5 17 2.77 2.65 1.99 0.15

Run III 5.0 1.21 1 7 3.64 3.64 1.80 0.47

TABLE I: Plasma β; structure function exponent γ; La-
grangian integral times (τℓ and τℓg, in units of Ω−1

cp ); diffusion

coefficient Ds and its expectation D
(a)
s ; pair-dispersion expo-

nent µ and pair-diffusion coefficient χ0.

solving [24, 25]

∂x

∂t
= v,

∂v

∂t
= E + v ×B,

∂B

∂t
=−∇×E=∇×

[

u×B−
1

ρ
j×B+

1

ρ
∇Pe−ηj

]

,(4)

where x are the proton positions and v their velocities,
B = b + B0ẑ is the total (solenoidal) magnetic field,
j = ∇ × B is the current density, ρ and u represent
the proton (electron) density and the proton bulk veloc-
ity, respectively. Electron pressure Pe is adiabatic, with
βe = βp = β, and a small resistivity η suppresses small
grid-scale activity. Space is normalized to the proton
skin depth dp, time with the proton cyclotron frequency
Ωcp, velocities to the thermal speed vth, and magnetic
field with Alfvèn speed of the mean magnetic field B0.
A spatial grid of Nx ×Ny = 5122 mesh points is defined
in a periodic box of side L0 = 128dp. A large num-
ber (1500) of particles-per-cell (ppc) has been chosen to
suppress the statistical noise. Three values of plasma β
(thermal/magnetic pressure) are chosen, as reported in
Table I. The initial fluctuations are chosen with random
phases, and with the Fourier modes satisfying 3 ≤ m ≤ 7,
where the k-vector is defined as k = 2π

128dp

m. Fluctua-

tions have brms = vrms = 0.5, with B0 = 1. Proton
heating in low-noise simulations is moderate [23], and
the value of the effective β at the end of each simulation
is increased by ∼ 12%.
To achieve steady state turbulence in a plasma, we bor-

row ideas from hydrodynamics [26–28]. We initially let
the system decay freely, and then we introduce a forcing
at the peak of nonlinearity t⋆ (roughly the peak of 〈j2z 〉
[29]), with t⋆ ∼ 25Ω−1

cp . The forcing consists of “freez-
ing” the amplitude of the large scale modes of the in-
plane magnetic field, with 1 ≤ m ≤ 4, leaving the phases
unchanged. This corresponds to a large scale input of
energy. We perform the analysis described below when a
steady state has been achieved, for 50 < tΩcp < 250.
To characterize turbulence, we computed the second

order structure function of the magnetic field Sb(δ) =

〈[b (x+ δ, t)− b (x, t)]
2
〉V,T , where 〈•〉V,T represents a

double average over volume and time. Positions x and
increments δ are in the (x, y) plane. For an isotropic
inertial range of turbulence,

Sb(δ) ∼ δγ . (5)
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FIG. 1: Structure function of the magnetic field as a function
of the spatial increment δ, for all the Runs. Full (green) and
dashed (blue) lines represent the fit with Eq. (5), for Run II
and III, respectively. Exponents γ are given in Table I.

As reported in Fig. 1, the structure function manifests
a clear self-similar range. Fitting with Eq. (5), we find
that γ is quite close to unity, as reported in the Table
I. Note that in classical 3D hydrodynamic turbulence at
large Reynolds number, γ = 2/3, corresponding to the
celebrated Kolmogorov law [1]. In plasmas the case is
more complex, and it can depend on other factors, such
as compressibility, dimensionality and anisotropy, as well
as the effective Reynolds numbers. Note, however, that
observations and simulations suggest non-universality of
plasma turbulence [30, 31].

We computed the auto-correlation function Cb(δ) =
〈b (x+ δ, t) · b (x, t)〉V,T , and the auto-correlation length

as λC =
∫ L0/2

0 Cb(q)dq. For these simulations λC ∼ 9dp,
which provides a large scale bound to Eq. (5). Analo-
gously, one might identify the small scale termination of
the inertial range approximately as the Taylor microscale,
which in our case is λT =

√

〈b2〉/〈j2〉 ∼ 1.5dp. ¿From
Fig. 1, Eq. (5) holds for λT < δ < λC . It is interesting to
note that, at the highest β (Run III), a slightly shorter
inertial range is observed, with an higher value of γ. This
is possibly due to an higher damping of the Alfvénic and
magnetosonic activity.

We analyzed a subset of Np randomly selected parti-
cles, represented by particle-in-cell pseudo-particles, with
Np = 105. Convergence tests have been performed vary-
ing Np from 5 × 104 to Np = 2 × 105 showing no sig-
nificant difference. The space-time trajectories of some
“puffs” of particles, located at different (randomly se-
lected) regions, are reported in Fig. 2. In the same plot,
shaded contours reports jz at tΩcp ∼ 50 and 250. Parti-
cles bunches spread explosively in time, with a very fast
departure in the first 10-30 cyclotron times. The inset
shows the initial spreading of the central puff, together
with some the trajectories of the associated gyro-centers.
Gyro-center positions have been computed as xg(t) =

(1/T )
∫ t+T/2

t−T/2
x(t′)dt′, using the gyroperiod T = 2πΩ−1

cp .

The initial separation suggests a superdiffusive behav-
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FIG. 2: “Puffs” of particles as a function of time, start-
ing from the steady state, located at different regions of 2D
plasma turbulence. jz is shown at two times, tΩcp = 50, 250
(shaded surfaces). The inset shows the initial spreading of a
population (small subset), up to tΩcp ∼ 75 (small spheres),
together with the position of some gyrocenters (big spheres).
Explosive dispersion is observed.

ior, while at very long times the motion seems to be un-
correlated and erratic. Trajectories vary greatly: some
remain near the origin; others experience long flights;
some rapidly change direction. These differences may re-
veal interesting correlations between particles and local
structures [11, 32–34], and will be matter of future in-
vestigations. As mentioned above, some trajectories are
similar to test particles in MHD or model fields [35].

To understand the ergodic motion in Fig. 2, we an-
alyzed single-particle statistics. We computed the La-
grangian correlation times defined by Eq. (1), for both
particles x(t) and gyro-centers xg(t). These correlation
times τℓ and τℓg, reported in the Table for all runs, are
larger than the cyclotron time and depend on the value of
β, being much smaller for higher β’s. This faster decorre-
lation is evidently due to the higher plasma thermal noise
which decorrelates the motion earlier. The gyrocenters
have longer decorrelation times.

To establish the link between plasma particles and
fluid tracers, we analyzed the single-particle displacement
〈∆s2〉. Here brackets indicate again an average over par-
ticles and times. Following Eq. (2), one can compute the

running diffusion coefficient as Ds =
1
2
∂〈∆s2〉

∂τ . If the dis-
placement is stochastic, for times τ ≫ τℓ, Ds → const.
On the contrary, for τ → 0, 〈∆s2〉 ∼ τ2, typical of bal-
listic transport. As reported in Fig. 3, 〈∆s2〉 behaves
asymptotically as ∼ τ . The horizontal lines indicat-
ing Ds computed as a fit for very large times, namely

-1

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100

 

τ Ωcp

∂ 
〈 —

—
∆s

2
  
〉

—
—

—
—

∂ 
τ

1 — 2

  Run I

 Run II

Run III

✰✰

✰

 

 

 

10
-1

10
0

10
1

 0.1  1  10

〈— ∆s
2
〉

τ Ωcp

∼τ2

FIG. 3: Running diffusion coefficients 1
2

∂〈∆s2〉
∂τ

for all the
runs. Stars indicate Ds, computed as a fit for very large times
τΩcp > 90. The inset shows the mean square displacement
〈∆s2〉 in the very initial stage (Run II).

τ > 90Ω−1
cp ≫ τℓ. This value can be compared with

the asymptotic coefficient, computed from Eq. (1) as

D
(a)
s =

∫∞

0
〈v(t0) · v(t0 + τ)〉dτ . As it can be seen, from

the figure and the Table, the long-time diffusive limit is
evident [4, 36]. As expected from the Lagrangian corre-
lation times estimation, plasmas with higher β (Run III)
are more diffusive, with the decorrelation being faster,
due to the enhanced importance of fast microscopic par-
ticle speeds. (Note that the typical oscillation of running
diffusion coefficients, commonly observed in test-particle
studies, have a period on the order of the cyclotron time.)
In the inset of Fig. 3, the mean square displacement is
shown at earlier times, for Run II (all the runs have
similar behavior, not shown here). It is evident that
the Batchelor regime, where ∼ τ2 [20], is observed for
τ < 1.7Ω−1

cp ≪ τℓ.

For times on the order of τℓ and τℓg, an interesting
transient is observed, resembling the super-diffusive be-
havior typical of fluids. These time ranges correspond to
the fast dispersive motion observed in Fig. 2. We study
the temporal behavior of gyrocenters distances r(τ) (in
order to avoid the trivial particle gyroperiod), randomly
selected in our system, where the initial separation r0 has
been chosen to be sufficiently small. In ordinary fluids, in
order to capture inertial range super-diffusion, this sep-
aration must fall in the dissipative length-scales. In our
case we chose r0 = 0.2dp, which falls in the secondary
(dissipative) range, as it can be observed from Figs. 1-
3. Note that results do not depend on this choice for
0.1 < r0d

−1
p < 0.5 (not shown here). In analogy with the

single diffusion analysis, we computed the mean squared
perpendicular particle pair separation 〈r2〉(τ), reported
in Fig. 4-(a). After an initial transient, the mean square
separation manifests a self-similar law, with 〈r2〉 ∼ τµ.
The index slightly depends on the plasma beta, and is
between 1.8 and 2 (see Table I).
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FIG. 4: (a) Mean squared gyro-centers separation as a func-
tion of time. Inertial range fits ∼ τµ are reported (black
dashed lines) (see Table I for µ.) The horizontal (orange) dot-
ted line represents λC , while arrows indicate τℓg. (b) Particle
separation probability P (r, τ ) as a function of r, at different
τ . Results are shown for the intermediate β (Run II) but
are similar for all the runs. The Richardson fit is reported
with dashed (black) lines. Inset of (b): rescaled P (r, τ ) for
the same times (symbols) and Richardson expectation (−rγ)
(dashed line). The generalized law is clearly observed for
t ∼ τℓg , being lost when t ≫ τℓg (red triangles).

Fig. 4-(a) also indicates that after the typical sepa-
ration exceeds the correlation scale λc, normal diffusive
behavior is established. Analogously, the lower boundary
is given by the dispersive-dissipative length, here on the
order of the proton skin depth dp. The vertical arrows
represents the characteristic Lagrangian times τℓg, indi-
cating that the diffusive scaling law for plasmas appears
on timescales on the order of this decorrelation mecha-
nism. Diffusive asymptotic behavior is observed at very
large times. Lower β’s show a more clear super-diffusive
dispersion, while at higher β particles are less sensitive
to the E×B inertial range, which narrows the range of
superdiffusion. It is evident that the temporal behavior
is “slower” than the hydrodynamic law in Eq. (3), and
this apparent difference will be explained as follows.

In analogy with the Richardson work [3], and since

an exact scaling law for compressible anisotropic Vlasov
plasmas has not yet been formulated, we will study
P (r, τ), namely the probability that particles are sepa-
rated by a distance r, at a time τ . Richardson indeed
hypothesized that the probability satisfies [3, 37]

∂P (r, τ)

∂τ
=
1

r

∂

∂r

[

rχ(r)
∂P (r, τ)

∂r

]

, χ(r) = χ0r
2−γ . (6)

Here χ(r) is a scale-dependent eddy-diffusivity due to
turbulence, and in regular fluids, if the Kolmogorov law
is observed, χ(r) ∼ r4/3. In analogy with his intuition, we
infer χ(r) in Eq. (6) using the exponent in Eq. (5), as sug-
gested by Balkovsky and Lebedev [37]. Given an initial
condition P (r, τ = 0) = δ(r − r0), and

∫

P (r, τ)rdr = 1,
Eq. (6) admits a general solution [37]:

P (r, τ) =
A

(χ0γ2τ)
2

γ

e
− r

γ

χ0γ2τ ≡ P0(τ)e
− r

γ

χ0γ2τ . (7)

The above is a solution for r sufficiently larger than r0,
for separation-times which correspond to inertial range
length-scales, and where γ is again the exponent of the
second order structure function. In Fig. 4-(b), P (r, τ) is
shown, for Run II (all runs have similar results), together
with Eq. (7). The latter have been fitted varying A, and
keeping the same χ0 over for all the inertial range times.
As it can be seen, the distribution describes very well the
pair dispersion mechanism. In the inset of Fig. 4-(b), the
normalized P (r, τ) are reported, rescaling the distribu-
tion in time according to Eq. (7). The generalized law
is clearly observed for intermediate times, while is less
robust for τ ∼ 26Ω−1

cp , where 〈r2〉 approaches λ2
C [com-

pare panel (a) and (b)]. Finally, computing moments of
Eq. (7),

〈rµγ〉 ∼ τµ, (8)

which gives µ = 2/γ. The latter expectation is µ ∼ 1.87
for Run I and II, and ∼ 1.65 for Run III. These values
are in agreement with the fits of Fig. 4-(a) (see Table I).
Complex diffusive processes have been investigated in

2D plasma turbulence. In particular, using self-consistent
simulations of a hybrid-Vlasov plasma, particle diffusion
problems have been investigated. Moderately high reso-
lution simulations have been driven for very long times,
in order to resolve both short and very long asymptotic
behaviors. The plasma β has been varied in order to
identify the role of the thermal disturbances to the diffu-
sive processes. Particle trajectory show a very interest-
ing and complex behavior, being similar to both random
walk of magnetic field lines, and to test-particles in non-
self consistent models of magnetic fields in plasmas [13].
In agreement with fluids, the Lagrangian integral time
scale τℓ plays an important role: for times much longer
than τℓ, a classical diffusive behavior is observed, with
diffusion quantitatively proportional to the plasma beta
and τℓ inversely proportional to β. For τ ≪ τℓ, the par-
ticle free-streaming behavior is observed.
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For intermediate timescales (τ ∼ τℓ), and for inertial
range separations, particles (and their gyrocenters) un-
dergo superdiffusion, separating very quickly in time ac-
cording to Eq.s (6)-(8). The analysis of the probabil-
ity P (r, t) reveals that dispersion is in agreement with
a generalized Richardson law, depending on the expo-
nent of the spectral index (or the exponent of the second-
order structure function). The mean square displacement
shows super-diffusive behavior, defined by Eq. (8), where
µ is related to the fluctuations scaling. Results are less
pronounced for higher β where evidently the thermal mo-
tion dominates the dispersion and the properties of the
inertial range are less influential.
Space plasmas observations and theories suggest than

many effects influence the turbulent fluctuations [31, 38],
going from strong to weak turbulent regimes. The so-
lutions described by the present numerical experiments,
although have been verified here only in few regimes, in-
dicate for the first time that plasma particles may exhibit
a generalized Richardson diffusion. The detailed results
vary with parameters, e.g., for Kolmogorov scaling Eq.
(8) would predict µ ∼ 3, while for Iroshnikov-Kraichnan
spectra it would predict µ ∼ 4. When this effect is
present, bunches of particles undergo a very fast and ef-
fective mixing, with the duration of this extraordinary
separation being related to the properties of turbulence.

The present results must be viewed as a demonstration
rather than a universal result, given that, despite cov-
ering a wide range of plasma β, the simulations are re-
stricted to a particular driver, turbulence level, and to
2D. Future work will extend the above parameters, and
explore the role of dimensionality. In 3D, for example,
the eddy diffusivity in Eq. (6) may display an anisotropic
character, leading to further variations in the Richardson
solutions.

This qualitative picture suggests that on the solar
corona, for example, where more than 4 decades of tur-
bulence are expected, two particles starting at about a
proton skin depth will depart very quickly, reaching coro-
nal arch sized, very quickly. A similar behavior can be
observed in general in any space and laboratory plasma,
where turbulence can be therefore crucial for heating and
acceleration processes.
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