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A range of instabilities can occur in soft bodies that undergo large deformation. While most
of them arise under compressive forces, it has previously been shown analytically that a tensile
instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we
conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain
conditions and observed for the first time this elastic tensile instability. We found that equibiaxial
stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten
and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be
triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities
to enhance their functionality.

A variety of instabilities can be triggered when elas-
tic structures are subjected to mechanical loadings [1, 2].
While such instabilities have traditionally been consid-
ered as the onset of failure, a new trend is emerging in
which the dramatic geometric changes induced by them
are harnessed to enable new functionalities [3–6]. For
example, buckling of thin beams and shells has been in-
strumental in the design of stretchable electronics [7, 8],
complex 3D architectures [9, 10], materials with negative
Poisson’s ratio [11–13], and tunable acoustic metamate-
rials [14, 15]. Moreover, changes in surface curvature due
to wrinkling and creases have enabled the control of sur-
face chemistry [16], wettability [17], adhesion [18, 19],
and drag [20].

While most elastic instabilities are the result of com-
pressive forces, elastic bodies may also become unstable
under tensile loading. For example, a wrinkling insta-
bility can be triggered in a thin elastic sheet under uni-
axial extension [21–23], and a meniscus instability can
occur when a thin layer of elastic material is confined
and pulled in the out-of-plane direction resulting in a pe-
riodic array of fingers at its edges [24, 25]. Moreover, it is
well-known that a cavity can undergo a sudden expansion
upon reaching a critical internal pressure. This instabil-
ity is not only observed in the case of thin membranes
[26, 27], but also persists in thick solid bodies where it
is often referred to as cavitation [28]. Since cavitation is
the only tensile instability that has been found in thick
elastic bodies, a natural question to ask is whether other
elastic tensile instabilities can occur in such systems.

About half a century ago, it was shown analytically
that a tension instability can be triggered in a block of
incompressible elastic material subjected to equitriaxial
tension (Fig. 1(a)) [29–33]. More specifically, it has been
demonstrated that when a cube with edges of length L
and made from an incompressible Neo-Hookean material
with initial shear modulus µ, is subjected to uniform trac-
tions resulting in six tensile normal forces of magnitude
F , two possible equilibrium solutions exist (Supplemen-

FIG. 1: Force-stretch bifurcation diagram for (a) a cube sub-
jected to triaxial tension, (b) a square under plane strain
conditions subjected to biaxial tension and (c) a biaxially
stretched cross-shaped sample under plane strain conditions.
The solid and dashed lines represent stable and unstable load
paths, respectively. The contours show the maximum in-plane
principal strain. Note that (a) and (b) were obtained analyt-
ically, while (c) was obtained using finite element analysis.

tal Material: Analytical exploration [34])

λ1 = λ2 = λ3 = 1, (1)

and

F

µL2
= λ1 +

1

λ21
, λ2 = λ1, λ3 = λ−2

1 , (2)

λi being the principle stretches. As a result, when the ap-
plied force F is gradually increased, the block maintains
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its undeformed configuration (λi = 1) until F = 2µL2.
At this point, the solution bifurcates, the initial branch
(Eq. (1)) becomes unstable, and the cube snaps to the
second branch (Eq. (2)) and therefore suddenly flattens.
It should be noted that this instability has only been
demonstrated analytically and has not been triggered ex-
perimentally. In this Letter, guided by both analytical
and finite element models, we report the first experimen-
tal observation of this instability in a thick elastomeric
sample that is stretched equibiaxially under generalized
plane strain conditions.
Designing an experiment to realize the tension instability.
Although it is possible to analytically obtain the triaxial
tensile instability for a cube under triaxial tension, it is
challenging to realize the same conditions in experiments.
First, the instability requires the application of six equal
and orthogonal forces to a block of material. Second, the
forces need to be evenly spread across the whole surface,
and third, the boundary conditions have to adapt to the
large deformation after the instability has occured.

In an effort to simplify the boundary conditions, we
start by considering an incompressible elastomeric block
under plane strain conditions (i.e. λ3 = 1 and λ2 = λ−1

1 )
subjected to four in-plane tensile forces of magnitude F
as indicated in Fig. 1(b). When assuming a Neo-Hookean
material, the potential energy of the system, Π, is given
by

Π =
µL2D

2

(
λ21 +

1

λ21
− 2

)
− FL

(
λ1 +

1

λ1
− 2

)
, (3)

in which D is the out-of-plane thickness of the sample.
The equilibrium solutions are then found by minimizing
Π (i.e. ∂Π/∂λ1 = 0), yielding

λ1 = λ2 = λ3 = 1, (4)

and

F

µLD
= λ1 +

1

λ1
, λ2 = λ−1

1 , λ3 = 1, (5)

which are stable only if

∂2Π

∂λ2
= µL2D

(
1 +

3

λ41

)
− FL

(
2

λ31

)
> 0. (6)

Interestingly, the solutions defined by Eqs. (4)-(5) are
similar to those found for the triaxial case (Eqs. (1)-(2))
and still show a bifurcation point at F = 2µLD. Differ-
ently, for the plane strain case, no snap-through instabil-
ity is observed since the force monotonically increases, as
indicated in Fig. 1(b). Note that during loading the out-
of-plane tensile stress that builds up in the material due
to the plane strain conditions plays an important role,
since no instability occurs if we assume plane stress con-
ditions (Supplemental Material: Analytical exploration
[34]).

Next, to apply uniformly distributed traction forces to
the edges of the square, we consider a cross-shaped spec-
imen, as typically done for biaxial experiments [35, 36].
More specifically, we consider a square of edges W with
circles of radius R = 0.31W cut from the corners.
When assuming plane strain conditions, and applying
an outward displacement to the straight boundaries of
the sample, we expect its center to undergo a triax-
ial state of stress. To compare the response of the
cross-shaped sample with our analytical predictions for a
square (Fig. 1(b)), we monitor the evolution of the two
diagonals with initial length L =

√
2W − 2R located at

the center of the sample as shown in Fig. 1(c), and intro-
duce the stretches λ1 and λ2 to define their deformation.

Next, to determine the response of the cross-shaped
sample upon loading, we performed 2D implicit finite ele-
ment analysis under plane strain conditions using Abaqus
(Dassault Systèmes). We captured the material response
using a nearly incompressible Neo-Hookean model char-
acterized by a ratio between the bulk modulus, K, and
shear modulus, µ, of K/µ = 20 [37]. The four straight
edges of the samples were loaded by a force F in their
normal direction, while allowing movement in the orthog-
onal direction. Moreover, to break the symmetry of the
structure, we introduced a small imperfection by increas-
ing the radius of two diagonally placed holes by 0.2%.

The results of our simulations are shown in Fig. 1(c),
where we report the evolution of λ1 and λ2 as a func-
tion of the normalized force F/ (µLD). We find that an
instability is triggered at F/ (µLD) ≈ 2, resulting in a
sudden flattening of the central part of the sample simi-
lar to that predicted by the analytical model. However,
different from the analytical results shown in Fig. 1(b),
our results reveal that prior to the instability the cen-
tral domain slightly reduces in size (i.e. λ1 = λ2 6= 1).
This discrepancy arises because the deformation in the
numerical model is not homogeneous as assumed in the
analytical model (see distribution of the maximum in-
plane strain εmax in Fig. 1(c)).

Experimental result. Having demonstrated numerically
that an elastic instability is triggered when a cross-
shaped sample under plane strain conditions is subjected
to biaxial tension, we fabricated a thick sample from a
silicon rubber (Ecoflex 0030, Smooth-On) with a shear
modulus µ = 0.0216 MPa (Fig. 2(a) and Supplemental
Material: Experiments [34]). To constrain the out-of-
plane deformation we connected each side of the sample
to a stiffer silicon elastomer (Elite Double 32, Zhermack)
characterized by µ = 0.262 MPa [38]. Moreover, to ap-
proximate the plane strain conditions assumed in our cal-
culations, we took D/W � 1 (D = 132 mm and W = 14
mm). Finally, we placed steel tubes inside the stiffer
elastomer to connect it through cables to a rigid frame
that was used to stretch the sample. Fig. 2(b) shows
the observed deformation at u/W = 2.9, u/2 being the
displacement applied to each straight edge. Since bound-
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FIG. 2: (a) Experimental setup to subject our thick cross-shaped sample to biaxial tension. (b) Top and bottom views of the
deformed sample at u/W = 2.90. (c) Cross-sectional views of the sample at u/W = 0, 0.72, 1.45, 2.17 and 2.90 obtained using
a micro-CT X-ray imaging machine. (d) Relation between the normalized displacement, u/W , applied to the sample and the
stretches, λ1 and λ2, of the diagonals located at the center of the sample. The results were obtained by manually processing
the images and averaging five individual measurements (the error bars indicate the standard deviation) (scale bars 10 mm).

ary effects prevented us to clearly observe the instability
(Fig. S6), we acquired x-ray transmission images at dif-
ferent levels of applied deformation (Fig. 2(c) and Movie
1). We then manually processed the images to obtain the
stretches, λ1 and λ2, that define the deformation of the
diagonals of the central domain, exactly as in our simu-
lations. The results reported in Fig. 2(d) indicate that
at u/W ≈ 1 an instability is triggered that breaks the
symmetry and initiates a flattening of the center of the
sample. While the experimental results agree relatively
well with the 2D plane strain simulations, we find that
the instability is triggered for smaller deformations. This
discrepancy is likely due to imperfections introduced dur-
ing fabrication and loading, which tend to smoothen the
sudden transition arising from the instability and result
in an earlier flattening (Fig. S7).

Wavy pattern along the depth. From the experiments we
find that the instability not only results in the flatten-
ing of the center of the sample as predicted by the plane
strain simulations, but also introduces waves on the sur-
faces along the depth (Fig. 2(b)). To better understand
the formation of this wavy pattern, we conducted 3D ex-
plicit quasi-static finite element analysis and simulated
the cross-shaped sample as used in the experiments, i.e.
we modeled both the two elastomeric materials and steel
tubes to exactly mimic the experimental conditions [39].

As shown in Fig. 3(a) and Movie 2, our 3D simulations
confirm the experimental observations. By monitoring

the stretch of the diagonals defining the center region of
the sample (along the depth), it becomes clear that the
wavy pattern emerges the moment the sample becomes
unstable at u/W ≈ 2 (Fig. 3(b)). In fact, for u/W . 2
λ1 and λ2 are constant along the depth of the sample,
while for u/W & 2 they oscillate periodically. Moreover,
we also find that after the instability has occurred, the
sample not only deforms non-uniformly in-plane, but also
in the out-of-plane direction. To highlight this point, in
Fig. 3(c) we report the out-of-plane stretch, λ3, measured
along the center line of the sample at different levels of
applied loading. The results indicate that for u/W & 2
there is an alternation between regions experiencing out-
of plane extension and compression along the depth of
the sample.

Informed by the numerical results of Figs. 3(a)-(c), we
next extend our analytical model and assume that the
elastic block consists of two layers, a and b, which can
deform separately. We then impose generalized plane
strain conditions

h̄λa,3 +
(
1− h̄

)
λb,3 = 1, (7)

where the stretches λa,3 and λb,3 are indicated in
Fig. 3(d), and h̄ = Da/ (Da +Db) sets the ratio between
the depth of layer a and b in the undeformed configura-
tion. If we further assume that the four in-plane forces
applied to each layer depend on the initial size of the layer
(i.e. Fa = Fh̄ and Fb = F (1− h̄), F being the total force
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applied to the two blocks), the potential energy takes the
form (supplementary materials: Analytical exploration)

Π =
h̄µL2D

2

(
λ2a,1 +

1

λ2a,1λ
2
a,3

+ λ2a,3 − 3

)

+ µL2D
1− h̄

2

(
λ2b,1 +

(
1− h̄

)2
λ2b,1

(
1− h̄λa,3

)2
+

(
1− h̄λa,3

)2(
1− h̄

)2 − 3

)
− FaL

(
λa,1 +

1

λa,1λa,3
− 2

)

− FbL

(
λb,1 +

1− h̄
λb,1

(
1− h̄λa,3

) − 2

)
, (8)

where D = Da+Db. Minimizing the energy results again
in two possible solutions

λa,1 = 1 with 0 ≤ h̄ ≤ 1, (9)

F

µLD
= λa,1 +

1

λ2a,1
with h̄ =

λ2a,1 − 1

λ3a,1 − 1
, (10)

in which λa,3 = λb,1 = λb,2 = λa,1 and λa,2 = λb,3 = λ−2
a,1.

We find that the solutions defined by Eqs. (9)-(10) are
identical to those found for a cube subjected to equitri-
axial tension (Eqs. (1)-(2)), and that a bifurcation occurs
at F/ (µLD) = 2. For F/ (µLD) < 2 the system does not
deform (as illustrated in Fig. 3(e) for F/ (µLD) = 3/2),
while for F/ (µLD) > 2 one of the layer extends and the
other flattens in the out-of-plane direction (as illustrated
in Fig. 3(e) for F/ (µLD) = 5/2), resulting in a wavy pat-
tern that resembles the deformation shown in Figs. 2(b)
and 3(a).
Outlook. In this work, we experimentally showed that
an instability can be triggered in a thick elastic body
subjected to in-plane tensile forces and generalized plane
strain conditions. While an instability was already ana-
lytically predicted in 1948 for a cube subjected to triaxial
tension [29], here we extended the analysis to a configu-
ration that can be tested experimentally, and found that
the modified conditions result in a wavy pattern, as por-
tions of the sample alternatively extend and flatten in
the out-of-plane direction.

It should be noted that tensile loading conditions can
also lead to cavitation in solids [28, 40]. More specifically,
for an incompressible Neo-Hookean material subjected to
equitriaxial tension, it can be analytically derived that
cavitation initiates at a pressure of pcav = 5µ/2 [41]. As
a result, for the elastomeric cube of Fig. 1(a) subjected to
triaxial tension cavitation initiates at Fcav = 5µL2/2. Al-
though this critical value is 25% higher than that needed
to flatten the cube, we expect our sample to experi-
ence such value of stress in the post-buckling regime. In
fact, upon increasing the stretch applied to the sample to
u/W = 3.26, we immediately see some cavities forming,
which slowly increase in size when the applied deforma-
tion is maintained for a few hours (Movie 3).

FIG. 3: (a) Numerical snapshots of the sample, (b) stretches
that define the deformation of the diagonals of the central
domain (λ1 and λ2) along the depth of the sample, and (c)
out-of-plane stretch of the centerline (λ3) along the depth of
the sample, at u/W = 0, 0.96, 1.91, 2.90. (d) Schematic of
the bilayer under generalized plane strain conditions used in
our analytical model. (e) Deformed states of the analytical
model at F/(µLD) = 3/2 and 5/2 for D = 2L.

Finally, the cross-shaped samples used in our experi-
ments can be used to build a mechanical metamaterial
by arranging them on a square lattice as shown in Fig. 4.
By stretching the metamaterial biaxially (under plane
strain conditions), an instability is triggered at u/W ≈ 2
resulting in a checkerboard pattern of pores with two
different sizes as indicated by the evolution of the char-
acteristic pore sizes l1 and l2 shown in Fig. 4. While the
formation of this pattern has previously been observed in
simulations of similar periodic porous structures [42–44],
with the current work we have deciphered the underly-
ing mechanism that leads to the instability. As such,
we expect our study to open new avenues for the design
of soft structures that harness instabilities for improved
functionality.
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FIG. 4: Deformation of a mechanical metamaterial compris-
ing a square array of circular pores subjected to equibiaxial
tension. Similar to the case of the cross-shaped sample shown
in Fig. 1(c), an instability is triggered at u/W ≈ 2 resulting
in a checkerboard pattern of pores with two different sizes.
The contours represent the maximum in-plane strain εmax.
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