
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Energy Criterion for the Spectral Stability of Discrete
Breathers

Panayotis G. Kevrekidis, Jesús Cuevas-Maraver, and Dmitry E. Pelinovsky
Phys. Rev. Lett. 117, 094101 — Published 23 August 2016

DOI: 10.1103/PhysRevLett.117.094101

http://dx.doi.org/10.1103/PhysRevLett.117.094101


An energy criterion for the spectral stability of discrete breathers

Panayotis G. Kevrekidis
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305, USA
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Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical

example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose

a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established

Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the

discrete breather’s energy as a function of the breather frequency. Our analysis suggests and numerical results

corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable

in soft (hard) nonlinear potentials.

Introduction. Discrete breathers, also referred to as intrin-

sic localized modes, are time-periodic and exponentially lo-

calized in space coherent structures that have been extensively

studied over the last three decades; see, e.g., [1, 2]. Their rel-

evance has been recognized not only theoretically but, impor-

tantly, via physical experiments in areas as diverse as Joseph-

son junction arrays [3, 4], micro-mechanical cantilever ar-

rays [5, 6], coupled antiferromagnetic layers [7], electrical

transmission lines [8], halide-bridged transition metal com-

plexes [9], and torsionally-coupled pendula [10] among nu-

merous others. Remarkably, their areas of purview continue

to grow with a recent example being, e.g., granular crystals

in material science [11, 12]. Essentially, it is recognized that

broad classes of nonlinear dynamical lattices, including the

paradigmatic (for nonlinear science) case of the Fermi-Pasta-

Ulam (FPU) problem [13, 14], as well as that of Klein-Gordon

(KG) chains support a plethora of such states.

Since the energy function is typically the only conserved

quantity for the FPU and KG chains, stability criteria that

are well-established for solitary waves, such as the famous

Vakhitov–Kolokolov (VK) slope condition [15], do not apply

to classify their stability. As a result, most studies of stabil-

ity of discrete breathers chiefly rely on numerical experiments

and a qualitative analysis of eigenvalues in the Floquet-Bloch

spectra of the time-periodic linearization operators [16–19].

Some analytical results on the stability of discrete breathers

for KG lattices were obtained by using the limit of small

coupling between nearest lattice sites, typically referred to

as the anti-continuum (AC) limit [20]. In this limit, asymp-

totic stability of the fundamental (single-site) breathers was

established in [21]. Spectral stability of excited (multi-site)

breathers was classified near the AC limit in the work of [22–

24], depending on the phase difference in the nonlinear oscil-

lations between different sites of the lattice. More recently,

nonlinear instability of spectrally stable two-site breathers

was shown in [25]. Nevertheless, an overarching criterion of

breather stability tantamount to the VK criterion remains un-

known up to now.

In this work, we fill in this important void by deriving a

universal energy criterion both for the KG and FPU lattices.

In particular, we show that a transition from stability to insta-

bility of a discrete breather will occur at frequency ω, where

the energy-frequency dependence features an extremum,

i.e., at H ′(ω) = 0, where H is the breather’s energy. The

previously known lattices that exhibit energy thresholds for

discrete breathers like in [26, 27] represent case examples of

such an instability transition. Yet, here we illustrate the gen-

erality of such a conclusion both through an analytical theory

and through a number of prototypical numerical examples

(KG, monoatomic FPU, and diatomic FPU). In the vicinity

of the bifurcation point, where H ′(ω) = 0, our asymptotic

analysis and numerical computations suggest the following

general conclusion: Breathers with increasing (decreasing)

energy-frequency dependence are generically unstable in soft

(hard) nonlinear potentials. On the other hand, breathers

with decreasing (increasing) energy-frequency dependence

in soft (hard) potentials are generally free of the instability

associated with this criterion, yet they may experience

other instability forms (including e.g. period doublings,

oscillatory instabilities, etc. [1, 2]). Let us mention that

here, the potential is referred to as hard (soft) when the

energy-frequency dependence of individual oscillators is

monotonically increasing (decreasing) [28].

Mathematical Setup. We consider a one-dimensional (1D)

chain of nonlinear oscillators under Newtonian dynamics:

ün + V ′(un) = W ′(un+1 − un)−W ′(un − un−1), (1)

where n is defined on a 1D lattice, V is an on-site (substrate)

potential and W is the inter-site potential for nearest-neighbor

interaction. Both V and W are assumed smooth. The associ-
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FIG. 1: Breathers in a 2D KG lattice with a hard quartic potential

in the case of C = 0.5 (left panels) and a Morse potential with

C = 0.2 (right panels). The top panels show the profile of two

unstable breathers with a portion of the unit circle shown in the

inset, corresponding to C = 0.5, ω = 2.3 (left) and C = 0.2,

ω = 0.992 (right). Central panels shows the energy-frequency de-

pendence, whereas the bottom panels display the Floquet multipliers

with |µ| > 1 (i.e., associated with instability) versus ω.

ated energy function for the lattice (1) is given by

H =
∑

n∈Z

1

2
u̇2
n + V (un) +W (un+1 − un). (2)

If W ′(u) = Cu with coupling constant C while V satisfies

V ′(0) = 0 and V ′′(0) > 0, the chain is referred to as the

Klein–Gordon (KG) lattice. If V ′(u) = 0 while W satisfies

W ′(0) = 0 and W ′′(0) > 0, the chain is referred to as the

Fermi–Pasta–Ulam (FPU) lattice. For clarity, we describe our

results for the KG lattice and draw parallels to the FPU case.

Discrete breathers of the KG lattice are T -periodic solu-

tions with un(t+T ) = un(t) for every n. Setting the breather

frequency to ω = 2π/T , we can normalize the period of the

breather to 2π using un(t) = Un(τ), where τ = ωt and

Un(τ + 2π) = Un(τ). The profile Un also depends on fre-

quency ω. We then have

ω2U ′′
n (τ) + V ′(Un(τ)) = C(∆U)n(τ), (3)

where (∆U)n denotes the discrete Laplacian. The spectral

stability of discrete breathers is determined by the linearized

equations of motion

ẅn + V ′′(un)wn = C(∆w)n, (4)

where wn is a perturbation to un. According to the Floquet

theory, we are looking for solutions of the linearized equation

(4) in the form wn(t) = eλtWn(τ), where λ ∈ C is a spectral

parameter and Wn(τ + 2π) = Wn(τ). The spectral stability

problem is then

ω2W ′′
n
(τ) + 2λωW ′

n
(τ) + λ2Wn(τ)

+ V ′′(Un(τ))Wn(τ) = C(∆W )n(τ). (5)

The (continuous) spectral bands can be identified on the

unit circle in terms of the Floquet multipliers µ = eλT . To

be precise, the two bands are located at µ±(θ) = e±iω(θ)T ,

where ω(θ) =
√

1 + 4C sin2
(

θ

2

)

, θ ∈ [−π, π]. We assume

that the two bands are bounded away from the unit multi-

plier µ0 = 1, which corresponds to the isolated eigenvalue

λ0 = 0 in the spectral problem (5). Because of the transla-

tional invariance symmetry (in time), we note that the isolated

eigenvalue λ0 = 0 is at least double. Indeed, the eigenvec-

tor Wn(τ) = U ′
n(τ) satisfies (5) for λ = 0. Furthermore,

the generalized eigenvector W̃n(τ) = ∂ωUn(τ) satisfies the

derivative of (5) in λ for λ = 0 given by

(L∂ωU)n(τ) = 2ωU ′′
n
(τ), (6)

where

(LW )n(τ) = C(∆W )n(τ)−V ′′(Un(τ))Wn(τ)−ω2W ′′
n
(τ)

is the linearized operator for the spectral problem (5).

Let us assume that the kernel of L is exactly one-

dimensional with the eigenvector Wn(τ) = U ′
n
(τ). This

assumption is generally satisfied because no other symmetry

exists in the lattice (1) besides the translational symmetry in

time. The most typical scenario of a discrete breather becom-

ing unstable occurs when a pair of Floquet multipliersµ on the

unit circle coalesces at µ0 = 1 and splits along the real axis.

At the critical point, the eigenvalue λ0 = 0 of the spectral

problem (5) is assumed to have a higher-than-two-algebraic

multiplicity. It is exactly that condition which will provide

us with the energy criterion for spectral stability of discrete

breathers, as follows.

The condition that λ0 = 0 is at least quadruple (by Hamil-

tonian symmetry, it has an even multiplicity) is equivalent to

the Fredholm condition of existence of a solution to the sec-

ond derivative of (5) in λ for λ = 0. Using the projection

technique [28] yields the solvability condition in the form

0 =

∫ 2π

0

∑

n∈Z

U ′
n
(τ) [2ω∂ωU

′
n
(τ) + U ′

n
(τ)] dτ = TH ′(ω),

where H(ω) is the time-independent breather energy that fol-

lows from (2). The higher multiplicity condition (signaling

the potential transition between stability and instability) is

thus satisfied if ω is a critical point of the breather energy

H(ω).
The solvability condition H ′(ω) = 0 cannot be satisfied in

the AC limit, where the individual oscillator is always stable

with H ′(ω) > 0 for hard potentials and H ′(ω) < 0 for soft
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FIG. 2: Breathers in a monoatomic FPU chain with α = −1, β = 1.

Left (right) panels corresponds to the Sievers–Takeno (Page) mode.

The top panels show the breather profiles, in the strain variable, for

ω = 2.1. The middle panel shows the energy-frequency dependence,

whereas the bottom panel displays modulus of the Floquet multipli-

ers with |µ| > 1 versus ω.

potentials [28]. However, far from the AC limit such a bi-

furcation may (and often does) occur. If at the critical point,

λ0 = 0 is exactly quadruple, i.e., if a pair of simple Floquet

multipliers coalesces with the double unit multiplier µ0 = 1
at H ′(ω) = 0, then an expansion of the eigenvalue problem

(5) near the bifurcation point yields:

λ2TH ′(ω) + λ4M +O(λ6) = 0, (7)

where M 6= 0. Then, if M > 0, the breathers are stable

if H ′(ω) > 0 and unstable if H ′(ω) < 0, whereas if M <
0, then the breathers are stable if H ′(ω) < 0 and unstable

if H ′(ω) > 0. Detailed asymptotic analysis [28] suggests

that the former case is intrinsic for hard potentials and the

latter case is typical for soft potentials, at least in the small-

amplitude limit of KG breathers.

The same conclusion is also drawn in the FPU case when

reformulated in terms of the strain variable rn = un+1 − un,

because it is the strain variable that decays to zero at infinity

for FPU breathers [28].

Numerical illustrations: 2D KG breathers. We consider a

two-dimensional (2D) version of the KG lattice with the hard

φ4 potential V (u) = u2/2 + u4/4 [6] and the soft Morse

potential V (u) = (exp(−u) − 1)2/2. The latter has been

ubiquitously utilized for the study of breathers in DNA denat-

uration settings where it is used to model the hydrogen bond

−50 0 50
−1

−0.5

0

0.5

1

u n−
u n+

1

n
−50 0 50

−0.2

−0.1

0

0.1

0.2

u n−
u n+

1

n

1.15 1.155 1.16 1.165 1.17
3

3.05

3.1

3.15

3.2

3.25

H
(ω

)

ω
1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

H
(ω

)

ω

1.15 1.155 1.16 1.165 1.17
1

1.02

1.04

1.06

1.08

1.1

|µ
|

ω
1.3 1.35 1.4
1

1.05

1.1

1.15

1.2

1.25

|µ
|

ω

FIG. 3: Gap breathers in a diatomic FPU chain for a hard potential

with α = −1, β = 1, ǫ = 0.8 (left) and a soft potential with α = 0,

β = −1 and ǫ = 0.7 (right). The top panels show the breather

profiles, in the strain variable, for ω = 1.7 (left) and ω = 1.4 (right).

Blue (red) dots correspond to the more (less) massive particles. The

middle panel shows the energy-frequency dependence, whereas the

bottom panel displays the modulus of the Floquet multipliers with

|µ| > 1 versus ω.

connecting the two bases in a pair [29].

Fig. 1 shows the energy-frequency dependence for a fixed

coupling constant C, as well as the most unstable real Floquet

multiplier (recall that instability is tantamount to |µ| > 1) for

both hard and soft potentials. We observe a perfect correla-

tion, as prescribed by the theory, between the stability changes

and energy extrema. Indeed, the breather is stable (unstable)

at the regions of increasing (decreasing) energyH(ω) for hard

potentials, and this trend is reversed for soft potentials.

Notice that in the case of the hard potential, the breather is

still stable for every ω past the upper limit shown in Fig. 1.

However, in the case of the Morse potential, an instability

emerges for ω below the lower limit of the figure. This

instability not predicted by our energy criterion pertains to

the exchange of instability (precursor of breather mobility)

that typically occurs within the Morse potential [30].

Numerical Illustrations: 1D FPU breathers. We consider

both monoatomic and diatomic FPU chains [14]. In general,

these chains are modeled by the FPU equation

Mnün = W ′(un+1 − un)−W ′(un − un−1), (8)

with Mn being the particle masses. We choose V (u) =
u2/2 + αu3/3 + βu4/4. In the monoatomic case, Mn = 1
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for all sites, whereas, in the diatomic case, Mn = 1 for n even

and Mn = 1/ǫ2 for n odd, where ǫ2 is the parameter for mass

ratio of the diatomic FPU chain [18, 19].

It was demonstrated in [27], for the monoatomic chain, that

the large-amplitude breathers possess a minimum of H(ω)
since their amplitude does not tend to zero at the band edge

ω → 2. The energy threshold exists when α is taken below a

critical value of αc = −
√
3/2 ≈ −0.86 (for β = 1). How-

ever, in [27], the instability past the energy minimum was not

considered. Here we show that the energy threshold results in

the change of stability of discrete breathers.

As is typically the case in both FPU and KG chains, there

are two principal breathers, the so called Sievers–Takeno

(bond-centered) and Page (site-centered) modes. The for-

mer is, in general, exponentially unstable. Fig. 2 shows,

as dictated by our stability criterion for hard potentials, that

an exponential instability arises at the energy minimum for

both modes when ω → 2. In the Page mode, this transition

manifests itself as the appearance of an exponential instabil-

ity of the previously stable structure. In the already unstable

Sievers–Takeno mode, a second unstable Floquet multiplier

appears as ω → 2 (for a secondary instability which rapidly

overtakes the previous one as the instability with the largest

growth rates).

In the diatomic case, there is an opening of a frequency gap

within the phonon spectrum,

2ǫ2W ′′(0) < ω2 < 2W ′′(0).

This allows the existence of breathers with frequency ω in the

gap of the phonon spectrum (so-called gap breathers). Such

structures can exist even in the case of soft potentials [31],

bifurcating from the bottom of the optical phonon band; see

also [11] for a relevant experimental manifestation of such

modes. For the soft potential, see the right panels on Fig. 3,

no global energy minimum exists but extrema in the energy-

frequency curve may occur even if α = 0. In a full agreement

with the energy criterion for soft potentials, the instability of

such gap breathers is perfectly correlated with the increasing

energy-frequency dependence,

Finally, gap breathers also exist for hard potentials,

bifurcating from the top of the acoustic band, see the left

panels on Fig. 3. Their stability and energetic properties are

similar to the breathers in the monoatomic FPU lattice, also

necessitating a non-zeroα for the existence of energy minima.

Conclusions. In this work we have presented a systematic

and general energy criterion for spectral stability of breathers

in nonlinear dynamical lattices. The energy stability criterion

for discrete breathers is strongly reminiscent of the VK cri-

terion for solitary waves; in fact, as illustrated in [28], it re-

duces to the VK criterion in the small amplitude limit where

the breathers can be approximated as solitary waves. In view

of that, the proposed criterion can be considered as the defini-

tive analogue of the VK criterion for breathers.

We have then corroborated the validity of the energy crite-

rion for stability of discrete breathers via a wide range of mod-

els, both KG and FPU, both 1D and 2D, both homogeneous

and heterogeneous, showcasing that its generality transcends

the specific such properties of the model. It follows from our

numerical results that the breathers are unstable in hard (soft)

potentials if the energy-frequency dependence is decreasing

(increasing) and stable otherwise.

Admittedly, a general classification of instabilities of

breathers (more generally of periodic orbits, including non-

localized ones, such as plane waves in Hamiltonian systems)

in the same spirit as the well developed theory of solitary

waves of the nonlinear Schrödinger equation is still incom-

plete. Nevertheless, the present criterion we believe, consti-

tutes an important step towards future work in this direction,

and on understanding nonlinear stability of breathers in lat-

tices.
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