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As experiments are increasingly able to probe the quantum dynamics of systems with many degrees
of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information.
We elaborate on the relationship between one such bound—the Lieb-Robinson bound—and the
butterfly effect in strongly-coupled quantum systems. The butterfly effect implies the ballistic
growth of local operators in time, which can be quantified with the “butterfly” velocity vB . Similarly,
the Lieb-Robinson velocity places a state independent ballistic upper bound on the size of time
evolved operators in non-relativistic lattice models. Here, we argue that vB is a state-dependent
effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field
theories using holography and compare with free particle computations to understand the role of
strong coupling. We find that vB remains constant or decreases with decreasing temperature. We
also comment on experimental prospects and on the relationship between the butterfly velocity and
signaling.

In relativistic systems with exact Lorentz symme-
try, causality requires that spacelike-separated operators
commute. In non-relativistic systems, there is no anal-
ogous notion: a local operator V (0) at the origin need
not commute with another local operator W (x, t) at po-
sition x at a later time t, even if the separation is much
larger than the elapsed time |x| ≫ t. This can be un-
derstood by considering the Baker-Campbell-Hausdorff
formula for the expansion of W (x, t) = eiHtW (x)e−iHt,

W (x, t) =

∞∑

k=0

(it)k

k!
[H, . . . [H
︸ ︷︷ ︸

k

,W (x)] . . . ], (1)

where H is the Hamiltonian which is assumed to consist
of bounded local terms. As long as there is some sequence
of terms in H that connect the origin and point x (and
absent any special cancellations), the operator W (x, t)
will generically fail to commute with V (0).
This does not necessarily imply that the magnitude

commutator [W (x, t), V (0)] between distance operators
must be large. A bound of Lieb and Robinson [1], along
with many subsequent improvements [2–4], limits the size
of commutators of local operators separated in space and
time, even in non-relativistic systems. In terms of the
Heisenberg operatorW (x, t) at position x and time t and
an operator V at the origin of space and time, the bound
reads

‖[W (x, t), V (0)]‖ ≤ K0‖W‖‖V ‖e−(|x|−vLRt)/ξ0 (2)

where K0 and ξ0 are constants, ‖ · ‖ indicates the oper-
ator norm, and vLR is the Lieb-Robinson velocity. The
growth of the commutator is controlled by vLR, which is
a function of the parameters of the Hamiltonian. Hence
although operators separated by a distance x may cease

to exactly commute for any t > 0, the Lieb-Robinson
bound implies that their commutator cannot be O(1) un-
til t & x/vLR.

Thus, the Lieb-Robinson velocity provides a natural
notion of a “light” cone for non-relativistic systems. Even
for relativistic systems, where causality implies that the
commutator of local operators must be exactly zero for
t < x,1 the “Lieb-Robinson” cone, if more restrictive, de-
termines where in spacetime acting with a early operator
V (0) can nontrivially effect a later operator W (x, t).

Commutators [W (x, t), V (0)] of local Hermitian oper-
ators separated by time and space can also be used to
characterize the butterfly effect in many-body quantum
systems [5, 6]. The butterfly effect can be defined in
terms of such a commutator, which expresses the depen-
dence of later measurements of distant operators W (x, t)
on an earlier perturbation V (0). For strongly chaotic sys-
tems, such a commutator can exhibit exponential growth
in time, in analogy to the classical butterfly effect. This
connection was recently made sharp within the anti-de
Sitter / conformal field theory (AdS/CFT) correspon-
dence, where quantum chaos in strongly-coupled large-N
gauge theories was shown to be connected to universal
properties of high-energy scattering in the vicinity of the
horizons of black holes [7]. This has inspired a large body
of additional work [8–30].

To study the typical matrix elements of [W (x, t), V (0)],
it is useful to consider the average of its square,

C(x, t) ≡ −〈[W (x, t), V (0)]2〉β , (3)

1 In this letter we have set the speed of light to unity, c = 1.
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where 〈·〉β indicates thermal average at inverse temper-
ature β = 1/T . C(x, t) characterizes the strength of the
butterfly effect at x at time t after an earlier perturbation
of V (0) at the origin. The statement of many-body chaos
is that such commutators should grow to be large for al-
most all choices of operators W,V [11, 12] and should re-
main large for a long time thereafter. The time when the
commutator grows to be O(1) (for suitably normalized
operators) is known as the “scrambling” time [7, 31, 32]
and is usually denoted t∗. For large-N gauge theories
with O(N2) degrees of freedom per site, the early-time
approach to scrambling is governed by an exponential
growth with time

C(x, t) =
K

N2
eλL(t−x/vB) +O(N−4), (4)

for some constants K, λL, and vB that can depend on
the choice of operators in the commutator W,V .2 The
onset of chaos is characterized by the two quantities: λL,
and vB .
λL has been called a “Lyapunov” exponent [11]—

in analogy with classical chaos—and characterizes the
growth of chaos in time.3 Maldacena, Shenker, and Stan-
ford [14] showed that this exponent is bounded by the
temperature, λL ≤ 2π/β, with conjectured saturation
for systems with thermal states that have a large-N holo-
graphic black holes description whose near-horizon region
is well-described by Einstein gravity.
vB is a velocity—the “butterfly” velocity—and char-

acterizes speed at which the small perturbation grows
[7]. Considering the commutator (3) as quantifying the
effect of the perturbation V (0) on W (x, t), one may un-
derstand the butterfly effect as the growth of the operator
V (0) under time evolution. The speed of the growth is
characterized by vB, and the commutator begins to in-
crease when t ≈ x/vB + λ−1

L logN2 [10]. This defines an
effective light cone for chaos, a “butterfly” cone, outside
of which the system is not affected by the perturbation.
In this letter, we explore the relationship between the

Lieb-Robinson bound and the butterfly effect. A similar-
ity was first noticed in [10], where it was pointed out that
vLR can be used to bound the rate of growth of opera-
tors. Here, we would more directly like to contrast vLR

with vB. We will argue that the butterfly velocity can
play the role of a low energy Lieb-Robinson velocity.
To elaborate, the Lieb-Robinson holds for any local

lattice model of spins with bounded norm interactions.
The constants K0, ξ0, and vLR depend on the model,
but the general conclusion that there exists an effective

2 It can be that K = 0, in which case the early-time growth is
governed by the O(N−4) term.

3 In [19] it is argued that the classical limit of λL does not al-
ways map onto the classical definition of the Lyapunov exponent,
hence our use of “quotes.”

light cone does not. However, as a bound on the op-
erator norm of the commutator, it has some important
limitations. It requires that W and V have finite oper-
ator norm. Also, the constants appearing in the bound
are microscopic; from the point of view of a low energy
description of the physics in terms of an emergent quan-
tum field theory, they are UV sensitive. The reason for
these limitations is that the Lieb-Robinson bound is state
independent. One could hope that given further informa-
tion about the state of the system a tighter bound might
hold. Such a bound would constitute a bound on matrix
elements of the commutator between states of interest—
e.g. the butterfly commutator (3)—instead of a bound
on the operator norm.
To that end, we compute the rate of growth of com-

mutators of generic local operators (3) for a wide variety
of holographic states of matter. We show that butter-
fly commutators (3) grow ballistically with a butterfly
velocity vB, which is UV insensitive and only depends
on IR quantities such as temperature and certain ther-
modynamic exponents. We use these results to argue
that the butterfly velocity is a state-dependent effective
Lieb-Robinson velocity, which can be used to bound the
growth of commutators. For comparison, we provide a
direct calculation of these butterfly commutators in a
free fermion system. To further support our argument,
we show that, if we are allowed only low energy oper-
ators, the butterfly velocity places an upper bound on
the speed with which signals can be sent between distant
parties. Finally, we briefly discuss the prospect that our
results can probed experimentally using a recently pro-
posed framework for measuring the scrambling time and
the butterfly velocity [25].
In the Supplemental Material [33] we provide addi-

tional technical details: our holographic calculations, our
free fermion calculations, and the specifics of our signal-
ing argument.

����

Chaos in holographic models has so far been studied
mostly in the special case of conformal field theories.
Here, we will compute the rate of growth of commutators
of local operators for a much wider class of holographic
theories, specifically those with a finite density of charge
for some conserved U(1) symmetry.
The holographic backgrounds we study are solutions

of Einstein-Maxwell-Dilaton (EMD) theory and describe
the dynamics of a metric coupled to a gauge field and an
uncharged scalar. With an electric flux for the gauge field
turned on, such holographic models are dual to quantum
field theories at finite density, that is field theories with
a conserved U(1) charge perturbed by a chemical poten-
tial.4 These models were originally studied in attempt

4 Strictly speaking only some subset of these models have known
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to describe non-Fermi liquid states of electrons within
the so-called anti-de Sitter / condensed matter theory
(AdS/CMT) program [37–40].
The models are characterized by the bulk action of the

EMD theory; the important information therein is the
potential energy of the dilaton and the coupling of the
dilaton to the field strength of the gauge field. In terms
of observable parameters the backgrounds are character-
ized by two “critical exponents,” z and θ. The dynami-

cal exponent z relates momentum to energy via ω ∼ kz.
Correlations obey power laws at zero temperature, but at
finite temperature the field theory develops a correlation
length given by ξ ∼ T−1/z. The exponent θ enters via
the thermal entropy density,

s(T ) ∼ T (d−θ)/z ∼

(
1

ξ(T )

)d−θ

, (5)

where d is the spatial dimension of the field theory. The
physics is this: at a conventional quantum critical point
the entropy would scale as the inverse thermal length
ξ−1 to the power d, but when θ > 0 the entropy den-
sity scales like ξ−1 to the power d − θ. “Hyperscaling”
is violated, so θ is called the hyperscaling violation expo-

nent. For additional details about these geometries, see
the Supplemental Material [33].
The simplest example of such a hyperscaling violating

theory is a Fermi gas at finite density. This system has
z = 1 and θ = d− 1. Since the fermions fill up their sin-
gle particle energy levels up to a Fermi energy equal to
the chemical potential, the locus of zero energy states in
momentum space is generically d−1 dimensional instead
of zero dimensional. The extent to which the holographic
backgrounds we consider can describe conventional elec-
tronic states remains a topic of research.5 However, since
the results we find in the holographic model depend only
on z and θ in a rather simple way, we conjecture that they
are more broadly applicable as we elaborate on below.
To calculate the growth of the commutator C(x, t),

we will study black holes geometries perturbed by a lo-
calized operator W (x, t) [7, 10]. For large t such that
GNe2πt/β ∼ 1 (where GN is Newton’s constant) backre-
action will become important, and the perturbation will
create a shock wave with a profile h(x, t). Considering
C(x, t) in the t = 0 frame, the difference between the
state created by W (x, t)V (0) and the state created by
V (0)W (x, t) is a null shift of the V (0) quanta by h(x, t)
due to the shock wave [8, 10] (see also [41, 42]). Tak-
ing into account that the commutator is determined by

string theory embeddings, e.g. [37]. The remaining models ap-
pear to be consistent gravitational theories at low energies, but
their UV status is not clear.

5 For instance, note that imposing the null energy condition forbids
z = 1 and θ = d− 1 in holographic models.

the real part of 〈W (x, t)V (0)W (x, t)V (0)〉β [10], C(x, t)
behaves at early times such that β < t < x/vB + t∗ as

C(x, t) ∼ h(x, t)2 + . . . , (6)

where the scrambling time is given by t∗ = β
2π log ℓd

GN

.
We emphasize that this calculation is a statement about
commutators of generic operators. This is due to the
universal coupling of energy to gravity: any operator
that adds energy can backreact and generate a shockwave
(and operators that don’t add energy must commute with
H and don’t scramble).
In the Supplemental Material [33], we present the tech-

nical details of our calculation of h(x, t) using the shock
wave techniques of [7, 10]. From this, we extract the
butterfly velocity for hyperscaling violating geometries

vB =

(
β0

β

)1−1/z
√

d+ z − θ

2(d− θ)
, (7)

with 1/β0 a cutoff temperature above which the holo-
graphic solution breaks down. This is the main result of
our letter. As promised, the butterfly velocity is a func-
tion of IR quantities: thermodynamic exponents z, θ, and
the inverse temperature β. The only dependence on high
energy physics is the scale β0, which simply sets the units
of the temperature;6 the β0 dependence can be canceled
by taking an appropriate ratio, so the prefactor is mean-
ingful even when z 6= 1.7 Various comments are in order.
First, we note that in the limit of AdS z = 1, θ = 0,

we recover the previously reported velocity for Einstein
gravity [7, 10]

vB(z = 1, θ = 0) =

√

d+ 1

2d
. (8)

On the other hand, for the z and θ appropriate to a Fermi
gas at finite density, our result predicts

vB(z = 1, θ = d− 1) = 1, (9)

as appropriate for a theory that lives in effectively 1+ 1-
dimensions.
Second, we note that for z < 1 the butterfly veloc-

ity diverges at T = 0, but microscopic causality requires
bounded vB. Thus, if the hyperscaling violation geom-
etry is to describe the deep IR, we require z ≥ 1. This
means that vB has a temperature dependence of

vB ∼ T 1−1/z, 1− 1/z > 0, (10)

6 Suppose a hyperscaling violation metric of the form ds2 =
r2θ/d(−Ar2−2zdT 2 + BdX2 + Cdr2)/r2 (with constants A, B,
and C) is the IR limit of a solution which is asymptotically
AdS (with metric ds2 = D (−dT 2 + dX2 + dr2)/r2 and con-
stant D). Then, the change of variables X = (C/B)1/2 x and
T = (C/B)1/2 t preserves the speed of light c = 1 and puts
the metric into the standard hyperscaling violating form with
r2z−2

0
= A/B.

7 We thank Alexei Kitaev for raising this question.
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and increases with temperature. vB behaves as a ef-
fectively “renormalized” Lieb-Robinson velocity, with a
magnitude that depends on a negative power of the ther-
mal scale β.
Third, the allowed values of z and θ are constrained

by the null energy conditions. For example, when z = 1
the null energy condition implies that θ < 0 or θ > d.
Furthermore, if z ≥ 1 then d − θ + z ≥ 0. In fact, the
stronger condition d − θ + z > 1 follows from finiteness
of energy fluctuations in the ground state [43].
Finally, our computation also shows that for hyperscal-

ing violating theories

λL =
2π

β
, (11)

which, unlike vB, is unchanged from its value in Ein-
stein gravity [7]. We also point out that λL behaves like
a state-dependent effective Lieb-Robinson growth rate
(equivalent to vLR/ξ0 in (2)), a quantity for which a
stronger bound was successfully derived [14].

����

The main result of this letter is a computation of the
butterfly velocity in a class of strongly coupled quantum
field theories dual, via AdS/CFT, to Einstein-Maxwell-
Dilaton theories of gravity. In fact, the computation re-
lied only on the form of the metric, so any set of matter
fields coupled to Einstein gravity which produces such a
solution is sufficient. We framed the calculation in terms
of the possibility of a bound on the growth of commu-
tators analogous to the Lieb-Robinson bound in lattice
many-body systems, so we now briefly discuss the the-
sis that the butterfly velocity functions as a low-energy
Lieb-Robinson velocity.
To begin, it is interesting to compare the strongly cou-

pled holographic results to results in the opposite limit
of zero coupling. In the Supplemental Material [33], we
record calculations of commutators for free particle lat-
tice models. In these free particle models Wick’s theorem
implies that all commutators of composite operators are
controlled by the basic commutator (or anti-commutator)
between the elementary bosons (or fermions). For exam-
ple, a one-dimensional free fermion hopping model with
hopping matrix element w is known to flow to a free CFT
at low energies, and the anti-commutator of two fermions
at integer positions x and y is

{c(x, t), c†(y, 0)} = e−iπ(x−y)/2Jx−y(2wt), (12)

where Jν(x) is a Bessel function of index ν. This anti-
commutator grows outward like a shell,

{c(x, t), c†(y, 0)} ∼
t|x−y|

|x− y|!
, (early times), (13)

∼ t−1/2, (late times), (14)

showing an initial rise followed by a slow decay to zero.
This is to be contrasted to a strongly-coupled system,
where commutators should grow like a ball [10].
The anti-commutator (12) is state-independent and

sensitive to the UV details of the lattice model.8 How-
ever, by considering fermion operators corresponding to
low energy wavepackets, it is possible to exhibit an anti-
commutator which grows instead at some group velocity
given by the momentum derivative of the energy eval-
uated at the average momentum of the wavepacket. If
the dispersion relation near zero energy is ǫ ∼ kz with k
the momentum, then in a thermal state where the typi-
cal energy is T , the typical thermal group velocity will be
T 1−1/z as in the holographic results. With the additional
reasonable assumption that weak interactions cause high
energy particles to decay towards low energy, it is plau-
sible that our holographic result applies at both weak
and strong coupling, at least in terms of its temperature
dependence. Note also that this result is not a trivial
consequence of dimensional analysis when θ 6= 0 since
there are additional scales in the problem.
In addition to these statements about commutators,

there is an alternative interpretation of vB in terms of
quantum information flow. As we show in the Supple-
mental Material [33], within a certain model of commu-
nication using only low energy observables, if the rele-
vant commutators between operators controlled by two
distant parties are small, then these parties cannot com-
municate much information. The butterfly velocity thus
defines an information theoretic light-cone in which quan-
tum information cannot be spread in space faster than
vB. Relatedly, in [18] it was argued that vB controls the
flow of information through time, and in [44], it will be
shown that the butterfly velocity vB controls the rate of
growth of the entanglement wedge in holographic theo-
ries. Thus, vB is both a measure of the growth of opera-
tors / commutators and also a measure of the spreading
of information under time evolution. These results all
support our identification of the butterfly velocity as a
low-energy Lieb-Robinson velocity.
It is also interesting to compare vB with the speed

of hydrodynamic sound. Conformal field theories sup-
port a hydrodynamic sound mode with velocity vs =

1√
d
.

Consistent with vB being an upper bound on operator
growth, we find vB(z = 1, θ = 0) ≥ vs for a CFT. In
the case where the shock wave calculation completely
determines the butterfly velocity, our results provide an
interesting constraint on the speed of the sound: if a hy-
drodynamic sound mode exists, its velocity must go to
zero with temperature at least as fast as vB.

9,10 The con-

8 While naively this violates the bound of [14], we note that the
assumptions of the proof fail to hold: the relevant time-ordered
four point functions fail to factorize after a “dissipation time.”

9 For example, a weakly interacting thermal gas of particles with
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straint can be avoided by adding extra ingredients into
the bulk, e.g. probe D-branes [45]. Presumably a proper
calculation of the butterfly velocity in the presence of
the D-brane would be sensitive to any sound mode on
the D-brane world volume.

����

To summarize, we have seen that the butterfly veloc-
ity vB characterizes the spread of quantum information
in quantum many-body systems and can provide a low-
energy analog of the microscopic Lieb-Robinson velocity
vLR. We have also computed the dependence of the but-
terfly velocity on temperature and on the thermodynamic
exponents z and θ at weak and strong coupling. Given
the interest in experimental measures of the spread of
quantum information [52–55], it is natural to ask if our
results can be tested experimentally.
Recently, an experimental protocol was devised to

measure out-of-time-order correlation functions [25].
Such correlators are simply related to the squared com-
mutator C(x, t), and therefore these measurements are
necessary to gain access to the butterfly velocity. Fur-
thermore, although the simpler measurement of an aver-
age commutator 〈[W (x, t), V (0)]〉 would give information
about the butterfly velocity (at least a lower bound), a
measurement of C(x, t) is more desirable because it gives
information about typical off-diagonal matrix elements.
Cold bosonic atoms moving in an optical lattice consti-

tute one experimental setting where such measurements
could be performed. Because the sign of the Hamiltonian
can be effectively reversed by combining lattice modula-
tion with Feshbach resonance, the echo-like measurement
necessary to measure C(x, t) is conceivable.
Note Added: After this letter was completed [28]

appeared which also computes the butterfly velocity in
hyperscaling violating geometries.
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