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In Nature Phys. 11, 668 (2015) (Ref. [1]), a composite particle prepared in a pure initial quantum state and
propagated in a uniform gravitational field is shown to undergo a decoherence process at a rate determined by
the gravitational acceleration. By assuming Einstein’s Equivalence Principle to be valid, we analyze a physical
realization of the (1+1)d thought experiment of Ref. [1] to demonstrate that the dephasing between the different
internal states arise not from gravity but rather from differences in their rest mass, and the mass dependence of
the de Broglie wave’s dispersion relation. We provide an alternative view to the situation considered by Ref. [1],
where we propose that gravity plays a kinematic role by providing a relative velocity to the detector frame with
respect to the particle; visibility can be easily recovered by giving the screen an appropriate uniform velocity.
We then apply this insight to their thought experiment in (1+1)d to draw a direct correspondance, and obtain
the same mathematical result for dephasing. We finally propose that dephasing due to gravity may in fact take
place for certain modifications to the gravitational potential where the Equivalence Principle is violated.

Introduction.– Exciting ideas have recently been proposed to
explore the interplay between quantum mechanics and grav-
ity using precision measurement experiments, for example
testing the quantum evolution of self-gravitating objects [2],
searching for modifications to the canonical commutation re-
lation [3], and studying the propagation of quantum wave-
functions in an external gravitational field [4, 5]. There have
also been proposals for the emergence of classicality through
gravitationally induced decoherence, such as from an effec-
tive field theory approach [6], [7] or the Diósi-Penrose model
[8], [9]. Pikovski et al. recently pointed out that a composite
quantum particle, prepared in an initial product state between
its “center of mass” and its internal state, will undergo a de-
coherence process with respect to its spatial degrees of free-
dom in a uniform gravitational field — as exhibited by a loss
of contrast in matter-wave interferometry experiments, whose
loss depends on the gravitational acceleration g [1]. They at-
tributed this effect to gravitational time dilation, and proposed
this as a universal decoherence mechanism for composite par-
ticles. This interpretation has significant implications and has
been the subject of lively debate [10–13].

According to Einstein’s Equivalence Principle (EEP),
freely falling experiments cannot detect the magnitude of
gravitational acceleration [14]. Of course, the thought ex-
periment in Ref. [1] is not in free fall: although there is no
physical detector in their setup, implicitly their detection pro-
cess occurs in an accelerating lab. This means their result is
not necessarily in contradiction with the EEP. Nevertheless, it
is still interesting to explain why the dephasing, which takes
place during the particle’s free propagation, has a rate deter-
mined by gravity. Furthermore, since EEP implies that gravity
is equivalent to acceleration, the idea of decoherence induced
by uniform gravity suggests that the motion of an accelerated
observer affects the evolution of a quantum system in such a

way that causes decoherence, which is an idea that begs clari-
fication.

At this point, we note that calculating the dephasing of
wavefunctions in the Lab frame as in Ref. [1] mixes the ob-
served effects due to propagation and those due to accelera-
tion of the detection frame. In this paper, we will separate
these two processes by providing a description of both the sys-
tem and measurement process in free falling Lorentz frames
which can be extended globally to Minkowski coordinates. In
a Lorentz frame, the internal states of the composite particle
do not interact with external potentials or each other, and are
distinguished only by their rest mass m. Therefore we can
treat each internal state as an independent, freely propagating
particle species labeled by m. The particles are measured in
a detector frame with relative motion, where specializing to
a uniformly accelerating detector frame recovers the case of
gravity. The overall measurement outcome is the trace over
all species. Using this framework, we model a physical re-
alization of the (1+1)d thought experiment of Ref. [1]. In
(3+1)d, we consider a particle beam propagating along one
direction, being measured by a screen travelling along an ar-
bitrary trajectory in a transverse direction [Fig. 1]. Due to
the mass dependence of de Broglie wave dispersion, where
ωk ≈ k2/2m, the packets have different propagation veloc-
ities and will arrive at the detector at different times. This
means that the pattern registered by the moving detector for
each species will be spatially shifted along the direction of
detector motion [Fig. 2]. This is equivalent to a mass depen-
dent phase shift that will result in the blurring of interference
fringes when all patterns are summed. Here, the motion of the
detector will determine the size of spatial the shifts, and there-
fore determines how much blurring occurs. This explains the
appearance of g in the dephasing rate of Ref. [1], since it con-
trols the motion of the screen for the case of uniform gravity.
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In this view, the source of dephasing is mass dependent dis-
persion, which appears as a loss of quantum coherence due
to a kinematic effect of detector motion. To emphasize that it
is not gravitational, we predict dephasing even in the absence
of gravity for a detector with uniform velocity. This insight
allows us to understand the thought experiment of Ref. [1]
without referring to time dilation: there, the interference pat-
tern generated by each species has a mass dependent spatial
wavevector, again due to dispersion. The dephasing is larger
as one moves farther away from the center of the superposi-
tion. If we observe the state at a constant coordinate position
in the Lab frame, then the effect of a moving Lab move far-
ther away from its center. Mathematically, this corresponds
to Ref. [1]’s calculation of the correlations between constant
coordinate values z1 and z2, initially near the center, at some
later time in the Lab frame. Therefore g again appears in the
dephasing rate via the Lab frame’s motion.

The Lorentz frame approach provides a simple way to un-
derstand the dephasing. However, a rigorous calculation re-
quires a description of the system and measurement as Lorentz
covariants, since Lorentz symmetry is a property required in
our discussion of frame independent physics viewed by arbi-
trary observers. We develop our formalism in this fully rela-
tivistic way, although we find that relativistic effects are ignor-
able, and the non-relativistic limit completely reconstructs the
effect found in Ref. [1]. In this analysis we have assumed EEP
to hold. We point out comparison of this approach with an ex-
plicit treatment of gravity as an modified external force field
offers possibilities to test for EEP violations in the quantum
regime. For our calculations and results we have set ~ = c = 1.
Evolution of a Composite Particle in the Lorentz Frame.–
Here, we give a Lorentz covariant description of the compos-
ite particle, then examine its evolution in a Lorentz frame with
Cartesian coordinates xµ = (t, x, y, z) = (t, x). We model each
species as an independent Klein Gordon field, with its field
operator φ̂m(xµ) satisfying (� + m2)φ̂m = 0, and with the rela-
tivistic dispersion relation ωm(k) =

√
m2 + k2, which we em-

phasize is mass dependent. Without loss of generality, a single
particle state for species m is given by

|Ψm〉 =

∫
d3k

(2π)3 gm(k)â†m(k)|0〉 (1)

where â†m(k) is the creation operator associated with φ̂m, and
creates a momentum eigenstate in the quantization frame with
eigenvalue k. When gm is limited to values of |k| � m, the
quantum state is non-relativistic. The Lorentz covariant state
vector can then be mapped to the time dependent quantum
mechanical wavefunction ψm(t, x) for a chosen frame by con-
structing the non-relativistic field operator Φ̂(t, x) = eimtφ̂(t, x)
and noting that ψm(t, x) = 〈0|Φ̂(t, x)|Ψm〉. Conversely, given
the form of the initial wavefunction ψm(0, x) in the particle
emitter frame, we can identify the state vector |Ψm〉. Sup-
pose then that the initial state of composite particle is a direct-
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FIG. 1: Propagation of a wavepacket for species m from the emit-
ter to the screen in the Lorentz frame. For each m, the same initial
wavefunction leads to the same measured wavefunction on the y = L
plane (where the screen is located), but the arrival time of the packets
depend on m. Here the screen is moving along z. The inset illustrates
that fm(k) is localized around k̄. For snapshots in time, see left panels
of Fig. 2.

product state between the internal and translational modes
of the composite particle. The translational mode corre-
sponds to the "center of mass" degree of freedom of Ref. [1],
and contains all the information about the particle’s location.
Therefore, all species share the same initial wavefunction, or
ψm(0, x) = ψini(x) (Fig. 1). This implies that they also share
the same momentum space distribution, which we denote by
fm(k). We note that fm(k) = gm(k)/

√
2ωm(k).

We consider the case where ψini(x) is spatially localized
around the origin and fm(k) is localized near k̄ = (0, k0, 0)
(inset of Fig. 1). This means that the wavepacket for species
m will propagate along y with mean velocity vm = k0/m, and
its center will arrive at the screen at y = L in time tm = mL/k0.
Although time evolution entangles the internal and transla-
tional modes so that ψm(t, x) is mass dependent, the wave-
functions at their respective tm does not depend on mass

ψm(tm, x) =

√
k0

2πiL

∫
d3x′e−

k0(x−x′ )2
2iL ψini(x′) ≡ ψfin (2)

In other words, the mass dependence of propagation and time
of arrival cancel each other, so that all species have the same
wavefunction upon arrival at the screen. Therefore, the pat-
tern registered by the screen for each species will be the same
modulo spatial displacement.
The Measurement Process.– For each species, we measure the
number of particles captured by the screen per area over the
lifetime of the experiment. We call this quantity the areal den-
sity and denote it by σm, and our final outcome σ is the sum of
σm over the mass distribution. To calculate σm, we introduce
the 4-current operator ĵνm(xµ) = i

[
∂νφ̂m,−(xµ)

]
φ̂m,+(xµ) + h.c.,

where we’ve defined φ̂m,+ and φ̂m,− as the positive and nega-
tive frequency components of φ̂m. For a particular quantum
state |Ψ〉, 〈Ψ| ĵνm(xµ)|Ψ〉 represents the 4-probability current for
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species m. Then the number of particles in a spacetime vol-
ume V is given by the flux integral

Nm[V] =

∫
V

dΣν〈Ψm| ĵνm|Ψm〉 . (3)

For Nm counted by a particular pixel on the screen, V is
spanned by dΣν, which is the differential volume one-form
corresponding to the proper area and proper time for the pixel.
This quantity depends on the detector trajectory, which we
will now characterize.
Detector Trajectory.– We allow the screen to move arbitrarily
along z, and we parametrize its central pixel by its proper time
τ

xµcs = [tcs(τ), 0, L, zcs(τ)] (4)

The central pixel has instantaneous 3-velocity β(τ) and
Lorentz factor γ(τ), and its proper acceleration is given by
g = γ2dβ/dτ. To find dΣν, we establish a proper reference
frame [15] for the central pixel with coordinates (τ, X,Y,Z) ,
which maps to Minkowski as

xµ(τ, X,Y,Z) =
[
tcs(τ) + βγZ, X,Y + L, zcs(τ) + γZ

]
(5)

We note that when g is constant, Eq. (5) recovers the trans-
formation to Rindler coordinates. In this coordinate sys-
tem, pixels on the screen are parametrized spatially by (X,Z),
with Y = 0. Then, the differential volume one-form at
(X,Z) is given in Minkowski coordinates by dΣν(X,Z) =[
0, 0, (1 + gZ)dXdZdτ, 0

]
. Using Eq. (3) and averaging over

area, we obtain the areal density for each species

σm(X,Z) =

∫
dτ (1 + gZ)〈Ψm| ĵym (xµ(τ, X, 0,Z)) |Ψm〉 (6)

Finally, the total count per area is given by integrating over
the mass distribution Pm, so that σ(X,Z) =

∫
dm Pmσm(X,Z).

The Interference Pattern and Loss of Visibility.– We will now
evaluate (6) by making some simplifying approximations:
since fm(k) is localized around k̄, and further assuming that
the packets are spatially localized to within l � L, where L
is the propagation distance, we can write Eq. (6) as a spatial
integral of |ψm(tm)|2 = |ψfin|2 along y. These approximations
correspond to the physical picture that the wavepacket dynam-
ics is semiclassical along the propagation direction, and that
it passes through the screen in a short enough time so that
during measurement, the packet shape is approximately rigid.
We emphasize that for all species, we integrate over the same
wavefunction ψfin. However, σm(X,Z) is still mass dependent,
but this dependence is now incorporated into the integration
trajectory in the y-z plane along which the pixel (X,Z) sam-
ples |ψfin|2. For our assumptions, the effect of this trajectory
is well approximated by the position at which the pixel sam-
ples |ψ2

fin| at the particular time of arrival tm for each species
m. If we additionally assume wavefunction separability such

that ψfin(x, y, z) = ψx
fin(x)ψy

fin(y)ψz
fin(z), and non-relativistic ve-

locities for the screen such that γ ≈ 1, Eq. (6) reduces to the
physically the physically intuitive form

σm(X,Z) =
∣∣∣ψx

fin(x)
∣∣∣2 ∣∣∣ψz

fin[z̃cs(tm) + Z]
∣∣∣2 (7)

where z̃cs(t) is an explicit function of t that gives the central
pixel’s z position in Minkowski time. Simply put, since each
species has a different time of arrival, then the pattern reg-
istered by a screen moving along z will have a m-dependent
spatial shift, as shown in Fig. 2. This mass dependence is
shown explicitly in Eq. (7) through z̃cs(tm).

To see how this causes loss of fringe visibility, suppose
now that ψz

fin contains an interference pattern with visibility
V , so that locally around z ≈ z̃cs(tm) we have |ψz

fin(z)|2 ∝[
1 + V cos(αz + φ)

]
, where α is the wavenumber of the spa-

tial oscillation. We can ignore φ without loss of generality,
and write

σ(Z) ∝
∫

Pm (1 + V cos[αzcs(tm) + Z]) dm (8)

This is simply a sum of shifted cosines, which will result in an
"fuzzy" interference pattern with a new visibility V ′ such that

V ′

V
= 1 − α

2 ˙̃z2
m̄t2

m̄

2

(
∆m
m̄

)2

(9)

where ∆m2 is the variance of the mass distribution, m̄ is the
average mass and the m̄ subscript is used denote quantities of
the average mass particle. We emphasize that the loss of con-
trast we predict depends crucially on the transverse velocity of
the screen at time tm̄, denoted by ˙̃zm̄, and has no dependence
on the acceleration, or equivalently, on gravity.

Note that Eq. (9) assumes small differences in spatial shifts
between species compared the coherence lengthscale, corre-
sponding to short measurement times. But since the interfer-
ence pattern is just the superposition of shifted cosines, for
finite number of particle species, we can always find a time
at which the oscillations for all species have cycled over an
integer number of 2π. This will recover full fringe visibility,
and corresponds to the "revival" effect of Ref. [1].
A Double Slit Experiment in a Uniformly Accelerating Lab.–
We now apply our model to the specific thought experiment
of Ref. [1], where there is an initial spatial superposition of
the translational mode so that ψini(x, y, z) ∝ [δ(z − z1) + δ(z −
z2)], and a thermal distribution at high temperature T of N
harmonic DOF’s, being measured by a detector with uniform
acceleration g. From this, we calculate the parameters V = 1
and α = k0(z1 − z2)/L from ψfin, z̃cs(t) = gt2/2 and ˙̃zm̄ = gtm̄
from the detector motion, and ∆m = kBT

√
N from the mass

distribution. Inserting these into our general result in Eq. (9),
we find

V ′ = 1 − N
2
[
g(z1 − z2)kBT

]2t2
m̄ (10)
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FIG. 2: Snapshots taken upon arrival of m1 and m2 (m1 < m2) packets
at the screen, at tm1 (upper left panel) and tm2 (lower left panel), re-
spectively (separation between the packets highly exaggerated). Po-
sitions of the screen differ at these moments (with central pixel la-
beled by red star), causing a shift in the interference pattern regis-
tered by the screen, which is best viewed in the central pixel’s proper
reference frame (right panel).

which exactly reproduces the loss of contrast found in
Ref. [1]. Using the insight that this is a kinematic effect which
is due to a coordinate transformation, we now address this
thought experiment without extension to our physical model
to establish direct correspondance.
The (1+1)d thought experiment.– We briefly state results from
the thought experiment of Ref. [1] using our kinematic in-
terpretation. Here, state preparation and detection occurs in
two different Local Lorentz frames, which we denote by LLF-
E for the emitter and LLF-D for the detector, with coordi-
nates (t, z) and (τ,Z) respectively. Here, detection at time
τ is an instantaneous evaluation of the particle’s wavefunc-
tion in LLF-D. Mapping the initial wavefunction ψm(0) ∝
[δ(z − z1) + δ(z − z2)] in LLF-E to a state vector, we boost the
field operator φ̂m by the instantaneous velocity v of LLF-D
at detection time. The spatial distribution in LLF-D at τ for
species m is then

|ψm(τ,Z)|2 ∝ 1 − cos
[m
τ

(Z − zc + vτ) ∆z
]

(11)

where ∆z = z2 − z1, and zc = (z2 + z1)/2 is the center of the
superposition. We point out that here the mass dependence
lies in the spatial frequency of the interference cosine term,
which again can be traced back to de Broglie wave dispersion.
The effect of an accelerating detection frame that observes the
system at the same coordinate point Z is to observe it at a point
farther away from zc as time increases. In the limit where the
detector motion dominates such that vτ � Z − zc, such as
when Z ∼ z1, z2 for realizable massive superpositions, and for

v = gτ, we obtain the the same loss of contrast as in Ref [1].

Origin of the loss in visibility.– While our predicted loss of
visibility in Eq’s. (10) for the Eq. (11) the same as that of
Ref. [1] in the appropriate limits, we interpret this effect as
being unrelated to gravity. The true source of dephasing is the
mass dependent dispersion of de Broglie waves. In our experi-
mental particle beam model, this manifests as mass dependent
propagation velocities, causing the species to arrive at differ-
ent times. This implies that a particular pixel on the moving
screen is effectively evaluating ψfin(x) at mass dependent po-
sitions along z as shown in Eq. (7) and in the left panels of
Fig. 2. On the screen itself, this means that different species
land on different locations, resulting in mass-dependent shifts
of their interference patterns along Z [Fig. 2, right panel],
which in turn smears out the pattern. Pictured in the lab frame,
packets of different species separate along y and drop onto the
screen at different heights. The size of these shifts, and con-
sequently the dephasing, depends on both the amount of time
the species are allowed propagate, as well as the velocity of
the screen at measurement time. In this way, the loss of visi-
bility appears as a rate that is directly related to the transverse
velocity of the detector [Eq. (9)], instead of acceleration. In
the situation considered by Ref. [1], gravity happens to sup-
ply such a transverse velocity, thereby making the decrease in
visibility dependent upon the gravitational acceleration. How-
ever, if we give the screen a uniform velocity in the Lab frame
(with gravity) that matches the velocity at which the packets
fall in the lab frame, there will be no loss of visibility. Vice
versa, even in absence of gravity, any motion of the screen
transverse to the beam’s propagation direction as the packets
land will lead to a loss of visibility. As for the thought ex-
periment of Ref. [1], mass dependent wave dispersion implies
greater dephasing among different species in regions farther
away from the center of the initial superposition. Observing
interference at constant lab coordinates equates to observing
the system at a point whose distance from its center increases
with time, resulting in an apparent dephasing “rate”. Thus,
our formalism offers an alternative perspective that the loss of
visibility is a is a kinematic effect instead of a gravitational
one.

Conclusions.– Having treated both the thought experiment of
Ref. [1] and its possible physical implementation as a particle
beam interferometry experiment, in both cases we offer the
point of view that dephasing between different internal states
do not arise from gravity, but instead from the mass depen-
dence of their de Broglie waves’ dispersion and the relative
transverse motion of the detector. Furthermore, the dephas-
ing we calculate from this perspective is the same as that pre-
dicted by Ref. [1] using their perspective of time dilation [18].
In these calculations, we have assumed EEP to be valid. The
comparison of these two approaches - by treating gravity ex-
plicitly versus as acceleration - offers possibilities to study the
implications of EEP in quantum systems and to test for its vi-
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olations in this regime. To do this, we will have to consider a
more general Hamiltonian in the Lab frame

Ĥ = p̂2/(2M̂) + Ĝ · x̂ (12)

where Ĝ, the gravitational force, is no longer given by M̂g,
which would a priori be consistent with Weak Equivalence. In
this case, the packets of multiple mass components will sepa-
rate due to both the spectrums of M̂ and Ĝ, and now gravity
will cause packet separation in addition to the effect of mass.
It is also plausible that preparation of novel quantum states
can reveal more structures in the operator Ĝ that could other-
wise be revealed by a classical experiment [16],[17].
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[17] M. Zych and Č. Brukner, arXiv preprint arXiv:1502.00971

(2015).
[18] The authors of Ref. [1] hold the position that the effect they

describe is due to time dilation, and thus a different effect than
discussed here.


