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We provide the first quantitative comparison between Barkhausen noise experiments and recent
predictions from the theory of avalanches for pinned interfaces, both in and beyond mean-field. We
study different classes of soft magnetic materials: polycrystals and amorphous samples, characterized
by long-range and short-range elasticity, respectively; both for thick and thin samples, i.e. with and
without eddy currents. The temporal avalanche shape at fixed size, and observables related to the
joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range
samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular,
the short-range samples provide the first reliable test of the theory beyond mean-field. The thick
samples show systematic deviations from the scaling theory, providing unambiguous signatures for
the presence of eddy currents.
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Barkhausen noise in soft magnets originates from the
jerky motion of magnetic domain walls (DWs), and
is characterized by scale-free power-law distributions
of magnetization jumps [1–6]. It is the earliest and
most scrutinized probe for avalanche motion, an ubiq-
uitous phenomenon present in other systems such as
fluid contact-line depinning [8, 9], brittle fracture fronts
[10, 11], and pinned vortex lines [12]. In all these sys-
tems the motion of an overdamped elastic interface (of
internal dimension d) driven in a quenched medium was
proposed as an efficient mesoscopic description. However,
until now, analytical predictions, allowing for a detailed
comparison with experiments, have been scarce, due to
the difficulty in treating collective discontinuous jumps
in presence of many metastable states.

Toy models have thus been developed, capturing es-
sential features at the level of mean-field (MF). One cel-
ebrated example is the ABBM model, where the domain
wall is modeled as a single point in an “effective” random
force landscape performing a (biased) Brownian motion
[13–15]. Refinements based on infinite-range models were
later proposed [16], leading to similar physics [15, 17].
These MF toy models predict an avalanche-size distribu-
tion P (S) ∼ S−τ with τ = τMF = 3/2 and a duration
distribution P (T ) ∼ T−α with α = αMF = 2.

The theory of interface depinning provides a predic-
tive universal framework for the avalanche statistics. It
involves two independent exponents, the roughness expo-
nent ζ and the dynamical exponent z. The distribution
exponents α and τ were conjectured from scaling, as in
the Narayan-Fisher (NF) conjecture τ = 2 − µ

d+ζ and

α = 1 + d+ζ−µ
z , where µ describes the range of interac-

tions. The upper-critical dimension at which ζ = 0 and
below which mean-field models fail is duc = 4 for short-

range elasticity (SR, µ = 2) and duc = 2 for long-range
elasticity (LR, µ = 1) [17].

In Barkhausen noise experiments, two distinct families
of samples were identified, consistent with these predic-
tions [18]. In polycrystaline materials, the DW experi-
ences strong anisotropic crystal fields leading to LR elas-
ticity. In the D = d + 1 = 2 + 1 geometry this system
behaves according to MF theory. In amorphous samples,
SR elasticity prevails over a negligible LR elasticity, and
the avalanche exponents agree with the NF prediction.
In both cases, a relevant role is played by the demagne-
tizing field, which acts as a cutoff for large avalanches
[18]. These mean-field predictions were tested in soft
magnetic thin films, where the retarding effects of eddy
currents (ECs) of bulk samples are negligible [6].

Recently, it became possible to compare theory and
experiments of avalanches well beyond scaling and the
value of exponents. On the theoretical side, the func-
tional renormalization group of depinning was extended
to calculate a host of avalanche observables [19–24]. Ex-
amples are the avalanche shape at fixed size and dura-
tion, the joint size distribution, both in mean-field and
beyond, even including retardation effects due to eddy
currents [26]. On the experimental side, the avalanche
shape was studied in magnetic systems [6, 7], in fracture
and imbibition [25]. Despite these experiments, most of
the recent predictions of the theory have not yet been
tested quantitatively, especially not to high accuracy.

The aim of this Letter is to provide new and sensitive
tests of these theoretical predictions in soft ferromagnets.
This is possible since in our Barkhausen experiment we
detected a high number of avalanches, getting a robust
statistics. Diverse magnetic samples have been explored,
corresponding to the two universality classes (LR and
SR), with and without EC effects. We focus our atten-
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Figure 1. Normalized average size 〈S〉T /Sm of Barkhausen
avalanches in the FeSi ribbon (blue dots) and the Py thin
film (red dots) as a function of the normalized duration

T̃ = T/τm. The continuous line is the theoretical predic-
tion gMF

1 of Eq. (4). For the ribbon, the deviation at large
durations is more evident due to effect of the eddy currents.
The inset shows the second moment 〈S2〉T /S2

m compared to
the prediction gMF

2 of Eq. (4).

tion on the avalanche shape at fixed size, and observables
linked to the joint distribution of sizes and durations.
The SR and LR samples with no ECs fit extremely well
with the theoretical predictions. In particular, the SR
samples for the first time provide a significant test of the
theory beyond mean-field. The effect of eddy currents on
the scaling properties is also investigated.

We start by presenting the predictions from the theory
of elastic interfaces that we aim to test [21–24]. These
predictions are calculated for avalanches following an in-
finitesimal increase in the field (kick). They also apply
to the stationary, quasi-static regime in the limit of slow
driving, as performed in experiments [23]. The interface
model involves a (small) mass m2, which flattens the in-
terface beyond the scale 1/m, playing the same role as
the demagnetizing field in setting the cutoff scale. As-
sociated to the two independent exponents ζ and z are
two independent scales Sm ' m−d+ζ and τm ' m−z, for
sizes and durations. The size scale Sm can be directly
measured in the experiments as

Sm =
〈S2〉
2〈S〉 , (1)

where 〈...〉 denotes expectation values w.r.t. P (S). On
the other hand, the time scale τm cannot be determined
analytically, and has to be guessed from data, as we ex-
plain later. We denote by u(x, t) the displacement field
of the interface, x ∈ Rd and by u̇(t) =

∫
ddx u̇(x, t) the

time derivative of the total swept area. The avalanche

size is S =
∫ T
0
dt u̇(t).
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Figure 2. Normalized average size 〈S〉T /Sm of avalanches
in the FeCoB ribbon (blue dots) and the FeSiB thin film
(red dots) as a function of T/τm. The continuous line is
the theoretical prediction of Eq. (5), with ε = 2, so that
〈S〉T /Sm ∼ 0.528 (T/τm)γ , with γ ∼ 1.76. The ribbon shows
a larger deviation due to eddy currents. A comparison with
the expected linear behavior at large T̃ is indicated by the
dashed line. Remarkably, this deviation occurs at sizes larger
than the size cutoff 4Sm, i.e. for 〈S〉T /Sm > 4.

The simplest observables we can consider are the mo-
ments of the average size at fixed duration

〈Sn〉T = (Sm)ngn(T/τm), gn(T̃ ) 'T̃→0 cnT̃
nγ , (2)

whose universal behavior for small avalanches defines the
exponent γ. Here, T̃ = T/τm is the rescaled avalanche
duration. In mean field, one finds

γMF = 2, cMF
1 =

1

3
, cMF

2 =
2

15
, (3)

and the scaling functions are

gMF
1 (T̃ ) = 2T̃ coth(T̃ /2)− 4, (4)

gMF
2 (T̃ ) = 2T̃ csch2

(
T̃

2

)[
T̃ (cosh(T̃ ) + 2)− 3 sinh(T̃ )

]
.

Beyond mean-field, one finds

γ =
d+ ζ

z
, c1 = cMF

1 +
11− 3γE − ln 4

81
ε, (5)

where the expression for c1 has been calculated to first
order in ε = duc − d. This leads to c1 ≈ 0.528 for ε = 2,
as in the case of µ = 2 and d = 2 (γE ≈ 0.577).

Another observable of interest is the averaged
avalanche duration at fixed size. In mean field, it is given
by

〈T 〉S/τm =
√
πS/Sm, (6)
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Figure 3. Normalized average duration 〈T 〉S/τm of avalanches
in the FeSi ribbon (blue dots) and the Py thin film (red dots)
as a function of the normalized size S/Sm. The continuous
line is the theoretical prediction of Eq. (6).

which is consistent with the general expected scaling
〈T̃ 〉S ∼ S1/γ , with γ = γMF. Remarkably, within mean-
field, Eq. (6) holds for any value of the ratio S/Sm.

Let us now consider the average temporal avalanche
shape at fixed size, 〈u̇(t)〉S , which takes the form

〈u̇(t)〉S =
S

τm

( S

Sm

)− 1
γ

f

(
t

τm

(Sm
S

)1
γ

)
, (7)

where f(t) is a universal scaling function, and∫∞
0

dt f(t) = 1. In mean field, f(t) is independent of
S/Sm [26] and reads

fMF(t) = 2te−t
2

. (8)

Beyond MF, the function f(t) has been obtained to O(ε)
for SR elasticity. Here, we use the convenient form

f(t) ≈ 2te−Ct
δ

B exp

(
− ε

9

[
δf(t)

fMF(t)
−t2 ln(2t)

])
, (9)

where the function δf(t) is displayed in Eq. (34) of Ref.
[24] and B chosen s.t.

∫∞
0
dt f(t) = 1, an approximation

exact to O(ε). Eq. (9) has asymptotic behaviors

f(t) 't→0 2Atγ−1, (10)

f(t) 't→∞ 2A′tβe−Ct
δ

, (11)

with A = 1 + ε
9 (1 − γE), A′ = 1 + ε

36 (5 − 3γE − ln 4),
β = 1− ε/18, C = 1 + ε

9 ln 2, and δ = 2 + ε/9.
To compare these theoretical predictions to our experi-

mental results, we first need to make use of dimensionless
units, thus rescaling sizes and durations by Sm and τm,
respectively. The parameter Sm is analytically defined
by Eq. (1); we tested that it leads to a consistent com-
parison of the measured size distribution P (S) with the
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Figure 4. Scaling collapse of the average shapes at fixed
avalanche sizes 〈u̇(t)〉S , according to Eq. (7), in the Py thin
film. The continuous line is the mean-field universal scaling
function in Eq. (8).

theory, see Supplemental Material [32]. In particular, we
verified that the cutoff occurs at 4Sm, as predicted. On
the other hand, τm can only be inferred using (i) the
expression of Eqs. (2) and (6); and (ii) the data of the
average shape 〈u̇(t)〉S . In absence of ECs, the estimation
of τm is made by matching both kind of data with the
analytical expressions, giving a consistent and robust es-
timation of the parameter [27]. In presence of ECs, we
use the procedure (i) to estimate τm.

We analysed the avalanche statistics in different classes
of materials. Two of them are thin films with negligi-
ble eddy current effects: a LR polycrystalline Ni81Fe19
Permalloy (Py) with a thickness of 200 nm (τm = 39µs)
and a SR amorphous Fe75Si15B10 (FeSiB) alloy, with a
thickness of 1000 nm (τm = 38µs) [29, 30]. The other
two samples are ribbons with a thickness of about 20µm,
where eddy current retarding effects are well known: a
LR polycristalline FeSi alloy with Si=7.8%, (τm = 2 ms),
and a SR amorphous Fe64Co21B15 (FeCoB) alloy, mea-
sured under a small tensile stress of 2 MPa (τm = 0.5
ms) [5, 18]. All samples have a space dimensionD = 2+1;
the two LR materials show MF exponents, while the
other ones have NF exponents, with ε = 2. Further de-
tails on the samples and the experiments are given in the
Supplemental Material [32].

Figures 1 and 2 report the average size as a function
of avalanche duration for LR and SR samples, respec-
tively, compared to the theoretical prediction of Eqs. (4)
and (5). In the absence of eddy currents, the correspon-
dence is almost perfect, except for the highest (S, T ) val-
ues. For LR samples (Fig. 1), the mean-field prediction
(4) crosses over from ∼ T̃ 2 to ∼ T̃ at large avalanche
sizes, a trend which seems to agree with our data. It
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is often argued that a linear dependence can also arise
from the superposition of a multiplicity of active DWs.
Indeed some of the largest avalanches are a superposi-
tion of smaller avalanches occurring in different parts of
the sample, triggered by the relatively large change of
the magnetization [31]. Furthermore, the retarding ef-
fect of eddy currents makes large avalanches (say, for
S > Sm) even longer, so that the average size further de-
viates from the theoretical prediction, especially in sam-
ples with more EC, as seen from Fig. 1. Note that the
agreement with the MF predictions is also quite good at
the level of fluctuations (i.e. the second moment 〈S2〉T
in the inset of Fig. 1). For the SR samples in Fig. 2, we
plot the prediction for small T̃ , in good agreement with
the data up to the size cutoff 4Sm, i.e. 〈S〉T /Sm ∼ 4. At
large T̃ we expect a similar bending to a linear behavior,
although there are presently no detailed predictions for
the crossover.

The mean avalanche duration at fixed size, 〈T 〉S , is
shown in Fig. 3 for LR samples. For the film, it shows
an almost perfect agreement with the MF prediction of
Eq. (6), indicating that ECs are indeed negligible, while
the effect of ECs is clearly visible in the ribbon.

Collapsing the experimental data of the average shapes
at fixed size 〈u̇(t)〉S gives an alternative powerful way to
estimate the exponent γ, as reported in Figs. 4 and 5.
Here we obtain the same exponents as from the average
size measurements 〈S〉T , i.e. γ = 2, and γ = 1.76, for LR
and SR respectively. The collapsed average shapes cor-
respond remarkably well to the theoretical predictions
of Eqs. (8) and (9), including the behavior in the tails
(shown in the SR case in the insets of Fig. 5). In the
Supplemental Material [32], we further verify that nei-
ther the collapse, nor the quantitative fit can be achieved
using the MF prediction.

Finally, it is well known that relaxation of eddy cur-
rents introduces a slow time scale into the dynamics,
stretching avalanches in time [26]. In Fig. 6, we have
obtained an approximate collapse for the SR case in
presence of eddy currents, using the theoretical value of
γ = 1.76. It is a manifest that the resulting curve is
different from the one predicted in absence of retarda-
tion effects. Hence, this is another unambiguous method
to detect the presence of ECs, similarly to the leftward
asymmetry of the temporal avalanche shapes at fixed du-
rations [7]. To go further and obtain predictions for the
average shape in presence of ECs is difficult, as the shape
strongly depends on the detailed parameters of the eddy
currents. A step in that direction was obtained within
MF in Ref. [26] for a particular model of retardation. De-
tailed comparison with experiments involve non-universal
scales, and is left for a future pubblication.

In conclusion we have shown how the data from
Barkhausen noise experiments can be analyzed and con-
fronted to the most precise recent theoretical predictions.
This provides very quantitative and fundamental tests of
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thin film. The continuous line is the prediction for the uni-
versal SR scaling function of Eq. (9). The insets show com-
parisons of the tails of the data with the predicted asymp-
totic behaviors of Eqs. (10) and (11), setting ε = 2, with
A = 1.094, A′ = 1.1, β = 0.89, C = 1.15, and δ = 2.22.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/τm/(S/Sm)1/γ

0.0

0.2

0.4

0.6

0.8

1.0

τ
m

S
1
/
γ

m

〈u̇
(t

)〉
S

S
1
−

1
/
γ

normalized size S/Sm
0.016
0.025
0.040
0.063

0.100
0.158
0.251
0.398

0.631
1.000
1.585
Th.

Figure 6. Scaling collapse of the average shape at fixed
avalanche sizes 〈u̇(t)〉S in the FeCoB ribbon using the the
theoretical values of γ and τm, as in Fig. 2. The collapse de-
viates from the universal functions predicted for SR systems
(continuous black line) in absence of eddy currents.

the theory of avalanches beyond scaling exponents. The
prediction of universality will also lead to a better char-
acterization of magnetic systems, allowing to measure its
dimensionality and, via the deviations from the theory,
effects of multiple avalanches or eddy currents.
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K. J. Måløy and M. J. Alava, Evolution of the average
avalanche shape with the universality class, Nat. Com-
mun. 4 (2013) 2927.

[26] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Statistics
of avalanches with relaxation and Barkhausen noise: A
solvable model, Phys. Rev. E 88 (2013) 032106.

[27] Its actual value depends on the threshold which defines
the start of the avalanche [5], however the latter can
safely be set within a range where the critical exponents’
estimation is robust, as explained in [28].

[28] L. Laurson, X. Illa and M. J. Alava, The effect of thresh-
olding on temporal avalanche statistics, J. Stat. Mech.
2009 (2009) P01019.
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