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We show that surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected
by line-like perturbations hosting one-dimensional electron states. The reflection originates from a strong
enhancement of the local optical conductivity caused by optical transitions involving these bound states. We
propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow
electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced
conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

Plasmon scattering and plasmon losses in Dirac materials,
such as graphene and topological insulators, are problems of
interest to both fundamental and applied research. It is an
outstanding challenge to understand various kinds of inter-
action (electron-electron, electron-phonon, electron-photon,
electron-disorder) responsible for these complex phenom-
ena [1–5]. At the same time, control of plasmon scattering is
critical if this class of materials is to become a new platform
for nanophotonics [6–9].

One source of plasmon scattering is long-range inhomo-
geneity of the electron density, which causes local fluctua-
tions in the plasmon wavelength λp . If the inhomogeneities
are weak, those of size comparable to the average λp are
expected to be the dominant scatterers [10, 11] Surprisingly,
recent experiments have revealed that one-dimensional (1D)
defects of nominally atomic width can act as effective reflec-
tors for plasmons with wavelengths as large as a few hundred
nm. Strong plasmon reflection was observed near grain
boundaries [12, 13], topological stacking faults [14], as well
as nanometer-scale wrinkles and cracks [11, 12] in graphene.
If this anomalous reflection is indeed an ubiquitous effect
largely unrelated to the specific nature of a defect, it calls for
a universal explanation. In this Letter we attribute its origin
to electron bound states commonly occurring near 1D de-
fects. We show that optical transitions involving the bound
states can produce strong dissipation at small distances x
from the defect and therefore, alter plasmon dynamics. To
support this idea we present a theoretical analysis of an ex-
actly solvable model, which illustrates qualitative and quan-
titative characteristics of the bound states and predicts how
their optical response depends on the tunable parameters of
a 1D potential well. We also report an attempt to probe the
predicted effects experimentally. Our approach is to em-
ploy an ultranarrow electric gate in the form of a carbon
nanotube (CNT) to create a precisely tunable 1D barrier in
graphene. This device enables a systematic investigation
and control of plasmon propagation, including, in principle,
an implementation of a plasmon on-off switch (Fig. 1). What
we find is that the measured real-space profile of the plas-
mon amplitude (Fig. 4) cannot be accounted for by a local

change in λp alone. Instead, the data are consistent with
the presence of an enhanced dissipation in the region next
to the CNT. The amount of this dissipation agrees in the
order of magnitude with the power absorption due to 1D
bound states in our model.

Model.—We assume that the graphene quasiparticles
can be described by a 2D Dirac Hamiltonian H =
ħvF

(
σz kx +σy ky

)+ v(x), where σy , σz are the Pauli ma-
trices and v(x) is the total (screened) potential induced
by the 1D gate. For simplicity, we assume that v(x) is a
square well of width d and depth u although more realis-
tic potentials [15–18] can also be considered. In the present
case the eigenfunctions Ψ are combinations of plane waves
and/or exponentials that have to be matched at x = ±d/2,
see [19]. The electron momentum ky along the perturba-
tion (in the y-direction) is conserved, so that the gapless 2D
Dirac spectrum is effectively replaced by a 1D one with a
gap ∆= |ħvF ky |. Within the gap electron states localized at
the well exist [Fig. 2(b)]. The energies εn(ky ) of these bound
states, where n = 1,2, . . ., are the solutions of the transcen-
dental equation [35]
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FIG. 1. (Color online) Schematic of an ultranarrow plasmon re-
flector. The incident plasmon (blue) can propagate freely unless a
local perturbation hosting a 1D electron state (the dashed arrow)
causes it to be reflected (orange). The bound state parameters are
controlled by voltage Vg of a nanotube gate (green).
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FIG. 2. (Color online) (a) Dispersion of bound states for a sheet
(blue) or a ribbon of width 2d (the black dots) for U = 5. The light
gray are empty states in the continuum. The dark and medium
gray are occupied states in the continuum. The last of these, with
E between EF = µd/ħvF and Emin = EF −ωd/vF , enable optical
transitions (the arrows) of frequency ω. Transitions between bound
states (the dashed arrow) can occur for some EF , e.g., EF = 0 at
which the state i is filled and the state f is empty. (b) The density
distribution n̄ = |Ψ|2 of the two states i and f for the transition
indicated by the cyan arrow in (a). The state i (blue) is localized
in the well, while the state f (orange) is extended. Parameters:
Ky = 2.5, ωd/vF =π/2.

Here E = εnd/(ħvF ) is the dimensionless energy and

Ky = ky d , U = ud/(ħvF ) , (2)

are, respectively, the dimensionless y-momentum and the
well depth. The dispersions of the three lowest bound states
for U = 5 are shown in Fig. 2(a).

The response of the system to an optical excitation of fre-
quency ω polarized in the x-direction is described by an
effective conductivity σ(x) given by the Kubo formula [19],
which determines the local current density jx (x) = Exσ(x) in
the approximation that the total electric field Ex due to the
optical excitation is uniform. Below we focus on the real part
of σ(x), which determines local power dissipation. We as-
sume that graphene is doped and consider only frequencies
ħω < 2|εF |, for which the optical conductivity of an infinite
graphene sheet vanishes (if we neglect disorder, many-body
scattering, and thermal broadening [3]). This implies that
in the absence of the perturbation, U = 0, we must have
Reσ(x) = 0 at all x. On the other hand, when the potential
well is present, a finite Reσ(x) exists. There are two types
of relevant optical transitions: those that involve the bound
states [as either the initial i or the final f states, Fig. 2(a)]
and those that do not. The contribution of the former to
Reσ(x) is maximized near the potential well and decays ex-
ponentially at |x| > d/2 due to the localized nature of the
bound states. The contribution of the latter is small, oscil-
lating, and decaying algebraically with x [19]. Resolving the
detailed real-space features of σ(x) in an optical experiment
is challenging (see below). A more practical observable is
the normalized integrated conductivity:

σ̄≡ 1

d

∞∫
−∞

d x Reσ(x) . (3)

According to our simulations, transitions that involve the
bound states give the dominant contribution to σ̄. In partic-
ular, bound-to-bound state transitions produce numerically
large values of σ̄ expressed in units of e2/h. Such transi-
tions are possible at discrete ky where the energy difference
between the states of the same momentum matches ħω pro-
vided the lower (higher) state is occupied (empty). If the
chemical potential µ is gradually increased, e.g., by electro-
static gating, the state occupations would change, leading to
either blocking or unblocking of these transitions. Accord-
ingly, σ̄ would either sharply drop or jump, see Fig. 3(a).
These changes persist, albeit blurred, at finite temperatures,
see the dashed curve in Fig. 3(a).

Sharp drops in σ̄ also occur when the bound states merge
with the continuum and get liquidated (become extended).
The drop is abrupt if the optical transitions probe a sin-
gle ky or a narrow range of ky . In principle, this situation
can be realized in a graphene ribbon running perpendicular
to the linelike perturbation. In such a ribbon the allowed
ky = mπ/W + const are discrete, as shown schematically
by the dots in Fig. 2(b). The coupling to a single bound
state can be achieved under the condition π/W > ω/vF ,
i.e., by using a ribbon of a narrow width W or the exci-
tation of a low frequency ω. In Fig. 3(b) we show three
numerically calculated traces of σ̄ as a function of the
well depth U for a fixed dimensionless chemical potential
EF = µd/(ħvF ) = −π/2. The first trace is computed for
a ribbon of width W = 2d probed at the excitation en-
ergy ħω = |µ|. It exhibits pronounced oscillations of σ̄.
In particular, σ̄ drops to zero when a bound state merges
with the continuum. The other two traces correspond to
a 2D graphene sheet. Although the sharp drops become
blurred, they remain pronounced at a low excitation energy
ħω1 = |µ|/10 and still evident at ħω2 = |µ|.
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FIG. 3. (Color online) (a) Integrated conductivity σ̄ of a graphene
sheet at ω = 830cm−1. The sharp changes are caused by block-
ing/unblocking of the transitions involving bound states as a re-
sult of changing occupations of the levels as a function of the
graphene chemical potential µ. For example, the plateau at
0.02 < µ(eV) < 0.12 is due to the (blue) dashed-line transition in
Fig. 2(a). (b) Integrated conductivity σ̄ of a sheet (s) and a ribbon
(r) at T = 0 and KF = −π/2. Sharp changes at U = 8 and 10 for
ω =ω2 arise from a transition between bound states. Parameters:
d = 10nm, ω1 = 83cm−1, ω2 = 830cm−1.
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FIG. 4. (Color online) Measurement of the conductivity σ̄ by the s-
SNOM. (a) A schematic showing graphene (variable intensity gray)
gated by a CNT (green) separated from it by a thin hBN layer. The
induced perturbation is parameterized by spatially varying kF and
γ. In the experiment, the AFM tip (triangle) is polarized by a fo-
cused infrared beam (not shown), which enables it to launch a plas-
mon (blue). The reflected plasmon (orange) causes an additional
tip polarization, resulting in a modified optical signal backscat-
tered by the tip and detected in the far field. (b) The s-SNOM
amplitude images of the region next to the CNT for Vg =+1...−2V

and ω = 890cm−1. The twin fringes (bright lines) intensify and
separate as |Vg | increases. (c) The AFM topography image of the
same region. Scale bar: 1µm. (d)-(e) The s-SNOM amplitude (s̄)
and phase (φ) along the line perpendicular to the CNT; s̄ is nor-
malized to x = −200nm point. The best theoretical fits (gray) for
Vg =−2V are included in (e).

The enhanced local optical conductivity around the 1D
gates described above causes plasmons to be strongly re-
flected. According to the first-order perturbation the-
ory [11, 12, 19], the reflection coefficient r of a normally inci-
dent plasmon wave is

r1 ' 2πi

λp

∞∫
−∞

d x

[
σ(x)

σ∞
−1

]
. (4)

For arbitrary perturbations, we can use the approximation
|r | ≈ min( |r1|,1). Using the results of Fig. 3(b) we estimate
|r | ≈ 0.3 at the chemical potential of 0.25eV where the pre-
dicted σ̄ ≈ 5e2/h. This roughly corresponds to the regime
probed by our experiments (see below). At the chemical
potential of 0.3eV where the calculated local conductivity
is much larger, σ̄≈ 40e2/h, the reflection coefficient should
approach unity, realizing the “reflector on” state in Fig. 1.
Experiment and analysis.—To investigate the described

above phenomena experimentally we fabricated a nanode-
vice that contained (bottom to top) a Si/SiO2 substrate, a

10nm-thick layer of hexagonal boron nitride (hBN), and a
mechanically exfoliated graphene flake. A metallic single-
wall CNT was placed between hBN and SiO2. The local
charge density of graphene was tunable by the voltage Vg

applied between the CNT and graphene. The average car-
rier density in graphene |n| ∼ 5× 1012 cm−2 was produced
by uncontrolled ambient dopants (acceptors) [36]. To infer
the local optical conductivity σ(x) we used scattering-type
scanning near-field optical microscopy (s-SNOM) [3, 37, 38],
see Fig. 4(a). The s-SNOM utilizes a tip of an atomic force
microscope (AFM) with a radus 25nm as an optical antenna
that couples incident infrared light to graphene plasmons.
The backscattered light is analyzed to extract the ampli-
tude s̄ and the phase φ of the genuine near-field signal,
Fig. 4(b,d,e). Crudely speaking, this signal is proportional
to the electric field inside the tip-sample nanogap. The
variation of this field with the tip position is caused by the
standing-wave patterns of surface plasmons [23, 39]. These
standing waves are due to the interference of the plasmon
waves launched by the tip with the waves reflected by the
charge inhomogeneity induced by the CNT. The spacing
of the interference fringes is equal to one half of the plas-
mon wavelength λp . The latter is given by λp = Re(2π/qp ),
where qp (x) = iκω/2πσ(x) is the complex plasmon momen-
tum and κ is the average permittivity of the media surround-
ing graphene [3]. Therefore, s-SNOM images combined with
the formula for qp give a direct estimate of Imσ(x). The ex-
traction of Reσ(x) requires an electromagnetic simulation of
the coupled tip-graphene system, which was done using the
numerical algorithm developed previously [12, 19, 23]. To fa-
cilitate connection with that previous work, we parametrized
the conductivity via

σ(x) = e2vF

πħω
i kF (x)

1+ iγ(x)
, (5)

which was modelled after the long-wavelength Drude (intra-
band) conductivity of graphene [3] with Fermi momentum
kF and dimensionless damping factor γ. The goal of the
data analysis was to determine the profiles of kF (x) and
γ(x) that yield the best fit to the s-SNOM data. In this
parametrization, the presence of the bound states should in-
crease the local damping, so the signature we were looking
for was the enhanced value of γ(x).

Our experimental data are presented in Fig. 4. The AFM
topography image, Fig. 4(c), shows that the CNT does not
produce any visible topographic features. However, in the
near-field signal, up to two pairs of intereference fringes ap-
pear on each side of the CNT [the bright lines in Fig. 4(b)].
Similar twin fringes have been observed in prior s-SNOM
imaging [12–14, 36] of linear defects in graphene. Impor-
tantly, the intensity and spacing of the fringes we observe
here evolve with the CNT voltage Vg , which attests to their
electronic (specifically, plasmonic) origin.

In addition to the controlled perturbation induced by the
CNT, graphene contains uncontrolled ones due to random
defects. To reduce the random noise caused by those, we
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FIG. 5. (Color online) The LDOS as a function of the dimension-
less energy E for the U = 5 square-well model at the three fixed
distances from the CNT: x/d = 0 (red), 0.6 (green), and 1.0 (violet).
The dashed line shows the LDOS of unperturbed graphene.

averaged the near-field signal over a large number of lin-
ear traces taken perpendicular to the CNT. Thus obtained
line profiles of both the amplitude s̄ and the phase φ are
plotted in Fig. 4(d) and (e). We focus on the Vg = −2V
trace, which shows the strongest modulation. The accu-
rate determination of functions kF (x) and γ(x) is impacted
by the s-SNOM resolution limit ∼ 20nm. In our fitting we
assumed that kF (x) is given by the perfect screening model,
k2

F (x) = [k2
F (0)d 2 + k2

F (∞)x2]/(d 2 + x2), which should be a
good approximation for high doping [24]. The adjustable
parameters are kF (0) and kF (∞). For γ(x) we considered
trial functions in the form of a peak (dip) at x = 0, with ad-
justable width and height (depth), as sketched in Fig. 4(a).
The trial kF (x) and γ(x) were fed as an input to the elec-
tromagnetic solver described previously [12, 23]. As detailed
in [19], a good agreement with the observed form of the
twin fringes requires a strong peak in γ(x) near the CNT.
The shape of the fringes was found to depend primarily on
the integral of γ(x)−γ(∞), so in the end we modeled γ(x)
by a box-like discontinuity with a central region of a fixed
width 13.5nm and two adjustable parameters γ(0), γ(∞).
The best fits [the gray curves in Fig. 4(e)] to the Vg = −2V
s-SNOM data were obtained using γ(0) = 1.65.

To establish a rough correspondence between the pro-
files of Fig. 4(e) and the square-well model we take d to
be the thickness of the hBN spacer d = 10nm and U to
give the same integrated weight

∫
v(x)d x ≡ ud = ħvF U =

ħvF
∫

[kF (x)−kF (∞)]d x. This prescription implies EF = 4,
U = 13, and σ̄ = 3.5e2/h for ω = 890cm−1 = 1.7vF /d [19].
The square-well model in Fig. 3 yields a comparable opti-
cal conductivity σ̄ = 4.7e2/h although for a smaller U = 5.
Given a number of simplifying assumptions we have made
in the modelling, this level of agreement seems adequate.
Summary and future directions.—In this Letter, we pro-

posed a model for the anomalous plasmon reflection by ul-
tranarrow electron boundaries in graphene. We validated
this concept in experiments with electrostatically tunable

line-like perturbations. One broad implication of our work
is that nanoimaging of collective modes can reveal nontriv-
ial electron properties, in this case, 1D bound states. Recent
experiments have demonstrated that this technique is not
limited to plasmons or graphene or 2D systems [40–43]. We
hope that our work stimulates even wider use of this novel
spectroscopic tool.

A particularly intriguing future direction is to comple-
ment s-SNOM with scanned probe techniques other than
AFM topography. For example, scanning tunneling mi-
croscopy, which has a superior spatial resolution, can be
used to measure the local electron density of states (LDOS).
For the particular model system studied here, the features
exhibited by the LDOS should be quite striking, see Fig. 5
and [19]. The origin of these features can be understood by
examining the dispersions in Fig. 2(a). Within the selected
energy interval there is the total of three bound states. The
topmost one has a monotonic dispersion; the other two have
energy minima at which the LDOS has van Hove singular-
ities (diverges), see Fig. 5. The strength of these singular-
ities decreases exponentially with x because these bound
states are localized near the well. At large x, the LDOS
displays the V-shaped energy dependence characteristic of
uniform graphene [3]. We anticipate that the combination of
optical and tunneling nanoimaging and nanospectroscopy
could provide a refined information about the local elec-
tronic structure. One example of a possible application of
this knowledge is the design of optimized plasmon switches
(Fig. 1) for Dirac-material-based nanoplasmonics.
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