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A generalized Heisenberg model is implemented to study the effect of thermal magnetic disorder
on kinetics of the Fe α−ε transition. The barrier to bulk martensitic displacement remains large
in α-Fe shocked well past the phase line but is much reduced in the [001] α−ε boundary. The first
result is consistent with observed over-driving to metastable α, while the second suggests structural
instability, as implied by observation of a [001] shock transformation front without plastic relaxation.
Reconciling both behaviors may require concurrent treatment of magnetic and structural order.

Recently-developed, in situ x-ray studies of shock com-
pression can probe the non-equilibrium time evolution of
phase transitions, besides locating them within the equi-
librium phase diagram. The archetypal system of elemen-
tal Fe transforms near 13 GPa pressure from ferromag-
netic (FM) bcc α to hcp ε phase [1, 2], where ε is antifer-
romagnetic (AFM) [3] or has fluctuating local moments
[4, 5]. Quasistatic experiments show the atomic and mag-
netic changes to be interrelated [6–8]. Fast (2-6 ns) [001]-
oriented shocks of single crystal α find that threshold 6%
compression at 13 GPa drives a transition to an ε-like
phase with volume collapse to 15-18% [001] compression
[9]. Remarkably, the transition is practically reversible
- no plastic wave is seen despite high elastic strain in
both phases [10], and recovered samples largely retain
single crystal character [9–11]. This unusual behavior
has been attributed to unstable (barrier-free) martensitic
displacement. Molecular dynamics simulations (MD) ex-
hibiting no martensitic barrier predicted this [12], form-
ing a transformation front in just 1-2 ps near threshold
shock compression. However, the interatomic potential
depends only implicitly on magnetic order. In contrast,
ultrafast (270 ps) shock experiments overdrive polycrys-
talline samples substantially (20-25 GPa) without trans-
formation [13], suggesting a significant activation barrier
to nucleation of a first order transition. The different
experimental kinetics may relate to differences in mag-
netic order between bulk and the α−ε interface, in which
case a single, nonmagnetic interatomic potential might
not capture the full range of behavior.

In the present work, we use density functional theory
(DFT) and model calculations to show that the barrier to
bulk α−ε martensitic displacement persists to >8% [001]
uniaxial strain, even with thermal magnetic disorder.
Thus, shocks may compress Fe beyond the equilibrium
phase line into metastability. At the same time, mag-
netic frustration is enhanced in the boundary between
competing phases, and we suggest that the martensitic
barrier may vanish within the [001] α−ε shock front closer
to threshold compressions. Once ε nuclei form (probably
heterogeneously) and grow into a shock transformation
front, atoms at the [001] interface may undergo marten-

sitic displacement along with changes in magnetic order
and layer spacing, collapsing layer-by-layer. The shock
front subsequently propagates without thermal activa-
tion or plastic accommodation.

Ground state DFT calculations predict a significant
α−ε structural transition barrier under hydrostatic pres-
sure [3, 14–16]; [001] compression is similar. Fig. 1 shows
total energies of Fe for two [001] uniaxial compressions
versus the bulk martensitic shuffle displacement, δ, cor-
responding to a T1 N -point phonon, shifting alternate
(110) bcc atomic planes in opposite [11̄0] directions. The
bulk martensitic barrier, labeled ∆EM in Fig. 1, is >45
meV/atom near the experimental threshold compression
[17]. Energies are obtained by VASP GGA-PAW with
EMAX ' 300 eV [18–21] and 8000 k-points for 4 atom
unit cells. Magnetic phases considered here include both
constrained and unconstrained spin structures of up to
16 atoms [22]. For reference, the equilibrium lattice con-
stant of 2.824 Å is underestimated versus experiment
(2.87 Å [23]), and elastic moduli are overestimated by
25% with this method. (The unshocked state in these
calculations is taken at the equilibrium DFT lattice con-
stant rather than the experimental value.)

The broad energy dispersions in Fig. 1 imply strong
magnon-phonon coupling. This causes Fe structural
properties to vary with temperature and thermal spin
disorder; e.g. phonon softening anomalies are promi-
nent near the Curie temperature [24, 25]. Magnetic
frustration is evident as many phases approach degen-
eracy near the transition state, suggesting that spin en-
tropy might lower the martensitic free energy barrier,
too. A prior study of the α-ε transition under hydro-
static stress included magnetic disorder, fitting a Heisen-
berg model to disordered local moment (DLM) calcula-
tions with collinear spin, however it predicted a nonzero
barrier for the martensitic transition path (albeit for hy-
drostatic pressure) [26]. Such magneto-structural cou-
pling may also influence shock behavior. In particular,
Fig. 1 sets an overall energy scale, ∆EFM−AFM , which
decreases versus εzz and δ. The Curie temperature scales
with this, so [001] shocks could conceivably disorder lo-
cal magnetic moments even without heating the material
excessively. Fig. 1 then suggests that loss of short-range
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FIG. 1. Total energies of Fe magnetic phases at [001] com-
pressions of 0, 7% (left, right) are shown versus amplitude
of the martensitic shuffle displacement, δ [14], from bcc at
center to hcp at the ends. Spin states include: ferromag-
netic (FM), nonmagnetic (NM), two-site collinear antiferro-
magnetic phases (AFM), corresponding ’spin-flop’ (SF) struc-
tures midway between these AFM and the FM phase, and a
low-energy spin-spiral structure. The hcp-like ground state
Ref. [3], is AFM (local moments ≥0.5 Bohr magneton).

FM order can destabilize bcc.
We employ a generalized Heisenberg model [27, 28] fit

to ordered, collinear and non-collinear spin structures to
study the bulk shuffle barrier. Self-consistent DFT total
energies and local moments are fit in tandem. Our model
Hamiltonian is

H({~µ}) = ENM +
∑
i

4∑
n=1

I
[n]
i |~µi|

2n

+
∑
ij

~µi · ~µj(Jij +Kij |~µi||~µj |+ Lij~µi · ~µj)
(1)

The energy zero is set by the |µ|=0, non-magnetic (NM)

phase. Onsite terms, I
[n]
i , parametrize a spontaneous

µ>0 and a susceptibility, needed because self-consistent
moments vary in magnitude between FM and AFM con-
figurations. Jij represents a conventional Heisenberg
coupling, approximating RKKY interactions with five
nearest cubic neighbor shells, j. Kij and (biquadratic)
Lij terms are partial, quartic extensions of the onsite
terms to the same five neighbor shells. They endow the
self-consistent µ with dependence on magnetic order, as
might be expected from ~k-dependent Fermi surface nest-
ing, and they meaningfully improve the quality of fit.
A more complete set of symmetry-allowed coefficients
[27, 28] is not considered.

All coefficients in Eq. 1 are expanded in Taylor se-
ries of both εzz and δ up to second order. The DFT

data includes seven equispaced compressions from 0 to
12%; the fit has a total RMS error of less than 3 and 5
meV/atom for cubic and tetragonal energies per atom,
respectively, and 0.05 µB for moments (see supplemental
material [22]). The model can be applied to cubic iron;
e.g., the Curie temperature is predicted to be 1070 K,
versus the experimental 1043K, and the local moment is
2.17µB versus the experimental value 2.22 µB [29]. How-
ever, the fitted FM energy is too high by 6 meV/atom at
the highest compressions (versus DFT), and the model
predicts a bcc-like AFM ground state at 9% [001] com-
pression, contrary to DFT.

Similar fits of Eq. 1 are made to the calculated DFT
uniaxial and biaxial stresses, σzz and (σxx+σyy)/2, for
δ=0. The RMS error for cubic stresses is δσ < 3 kbar;
for tetragonal cases δσ < 8 kbar, or about 1% of the total
range of values. All stresses are then reduced by 25% of
the ground state value for the given εzz to compensate
for the overly stiff moduli predicted by DFT.

We use the model of Eq. 1 to study the bcc-like final
state of planar 1-D shocks, with both compression and
heating. The interplay between thermally-disordered lo-
cal moments and atomic shuffle displacement is treated
using classical Metropolis Monte Carlo simulations [30] of
the generalized Heisenberg spin model for N=432 atoms.
The shock temperature is estimated from an equation
of state [31] extended to metastable α phase. For ex-
ample, a shock starting from room temperature is es-
timated to reach T = 341K at 6% compression. This
Hugoniot assumes plastic relaxation to hydrostatic pres-
sure, so the purely elastic, uniaxial compression that is
assumed here will achieve slightly lower temperatures.
Thermal magnetic disorder has a significant effect on the
uniaxial stress. The T=0 DFT stress at εzz=-0.06 is 16.7
GPa (including the 25% ground state correction, while
the (DFT-corrected) finite-T stress model gives σzz =
14.7 GPa at T=341 K, the expected shock temperature
starting from room temperature. The experimental value
is σzz '11.5 GPa at 5.5-6% [001] compression [9, 10] or
12.5 GPa at 6% [13]. Predictions beyond 6% compression
can be compared to (metastable) shock data in Ref. [13]:
σzz '17.5 GPa at 8% versus the corrected Heisenberg
model (T=362K, σzz=19.6 GPa); and σzz ' 22.5 GPa
at 10% versus the model (T=390 K, σzz=22.9 GPa). If
these predicted shock temperatures were higher by 20
K, the stresses would be reduced to 14.5, 19.3, and 22.6
GPa at 6, 8, and 10%, respectively. (Note that thermal
phonon contributions are not included here.)

The model predicts that AFM phases are energetically
favored by [001] compression. The {111} nearest neigh-
bor Heisenberg interaction is FM; this term dominates
but decreases in strength under [001] compressions. The
next-nearest, [001]-neighbor interaction is AFM. That
neighbor distance decreases rapidly under compression,
and the coupling strength rises, becoming comparable
in magnitude to the nearest neighbor interaction at 4%
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compression. Thus, TC is predicted to drop with com-
pression.

The martensitic barrier is expected to vanish as the T1
shuffle mode becomes unstable. An estimate is obtained
from ω2 ∝ ∂2〈H〉/∂δ2

∣∣
δ=0

, by fitting Eq. 1 to DFT en-
ergies at δ = 0, 1/8, 1/4 from bcc to (non-ideal) hcp.
This is analogous to computing a self-consistent phonon
in the presence of thermal magnetic disorder. It is also in
the spirit of an interatomic potential, in which thermal
electronic degrees of freedom are traced over, imposing
adiabatic separation of the phonon and the (only slightly
faster) magnon degrees of freedom.

The number of magnetic configurations in the equi-
librium ensemble that are structurally unstable to shuf-
fle (ω2≤0) is recorded during simulations of a periodic
432-spin system. Temperature and compression both
promote instability. No unstable configurations (out of
>105 samples) are found at 6% compression on the shock
Hugoniot of Fe from room temperature. At 8% shock
compression T=362 K and σzz=20 GPa, approximately
one in 105 states are unstable to shuffle displacement.
At 10%, 390K, and 23 GPa; fully 8% of all spin configu-
rations are structurally unstable. According to classical
nucleation theory in a large simulation volume, it be-
comes exponentially easier with temperature to achieve
a critical nucleus unstable to ε. The appearance of an
experimental structural transition in ultrafast shocks at
20-25 GPa [13] is consistent with the predicted trend.

The predicted reductions in TC and structural stabil-
ity may be slightly overestimated for two reasons, but the
trend is robust. First, the model Hamiltonian slightly fa-
vors AFM relative to FM at high strain (compared to
DFT). Second, the GGA-DFT energies themselves only
approximate the true many-body value. The intrinsic
uncertainty is seen if the unshocked state is taken at the
experimental lattice constant instead of the DFT equi-
librium value used here. In that case, the relative en-
ergy of the [001]-compressed FM state is reduced, and
the ground state remains FM beyond 12% compression.
Yet, correcting for both effects would favor increased FM
stability, higher TC , and a higher martensitic transition
state barrier. Thus, all indications are that the bulk tran-
sition barrier remains substantial at 6% [001] compres-
sion and that the initial stages of α−ε transformation at
threshold compression will follow conventional nucleation
and growth kinetics for a first order phase transition.

The analysis so far has been limited to bulk martensitic
transitions, as may occur in homogeneous nucleation.
DFT calculations are also made for a small, simplified
model of the [001] α-ε interface, in a periodic 24-atom
(12-layer) superlattice (see Fig. 2). (This is sufficient to
converge the interface with respect to cell size. The re-
laxed interface structure is comparable to a 36-atom cal-
culation [22]). Spin moments are initialized in VASP as:
3 layers FM, 6 spin-flop [32], and 3 collinear AFM; all
spins and the shuffle coordinates of interface layers are

a) [110]

[001]

b) [110]

[001]

FIG. 2. Constrained model of [001] α-ε interface.Black/gray
circles denote alternate [110] layers of atoms; white arrows
indicate local moments from VASP. [110] layers are fixed; all
[001] spacings are at 8% compression. Atoms in gray regions
are fully constrained; shuffle coordinates in white regions and
all spins are relaxed. The rightmost region shows three [001]
layers of untransformed, elastically-strained α; three layers of
fully transformed ε-like phase are at left. In a), the white
regions and gray band at center show a metastable interface
structure. In b), the center region shows the lowest-energy
configuration; two atoms are manually displaced along [11̄0]
as the interface shifts right. Coordinate axes are positioned
at the α-ε interface.

then relaxed. Fig. 2 shows the lowest energy spin and
shuffle configurations obtained from this starting state.
In a shock transformation front, successive [001] layers
would undergo spin rotation and shuffle along [11̄0], and
the interface would move to the right. In actuality, the ε
and interface regions would undergo additional compres-
sion. This constrained geometry estimates the marten-
sitic shuffle barrier inside the interface, analogous to the
bulk barrier in Fig. 1, where [001] layer spacing is also
held constant. It is not intended to be a faithful model of
structure or dynamics at the shock front, only to expose
the effect of magnetic frustration on the barrier between
FM and AFM domains near the coexistence line.

To study the transition barrier, the sixth atomic layer
from the right of Fig. 2 (shaded gray) is manually dis-
placed by different amounts, δ[6] from the configurations
in Fig. 2 towards bcc or hcp, while other degrees of free-
dom listed above are relaxed. This approximates prop-
agating the transformation front across one layer. The
total energy is recorded versus δ[6], and the resulting en-
ergy barrier is shown by the black solid curve in Fig. 3.
The sixth layer is structurally bistable, with local min-
ima on both the bcc-like and hcp-like sides (δ ∼ 0.1 and
0.2, respectively). The martensitic barrier for this single
interface layer is greatly reduced compared to the bulk
value in Fig. 1.

Thermal magnetic fluctuations are expected to reduce
the free energy barrier even further, as in the Monte Carlo
model for the bulk. To bound the effect at the interface,
the atomic coordinates in layer 6 are held fixed and the
two spins in that layer alone are constrained to rotate
in spin flop states towards collinear FM or AFM. All
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FIG. 3. Energy of the model α-ε interface versus δ[6], coor-
dinate of the sixth layer of the superlattice from the right in
Fig. 2; here δ=0 (1/3) corresponds to bcc (hcp). The energy
zero corresponds to the metastable structure a); the global
energy minimum corresponds to configuration b) in Fig. 2.
The black solid curve allows all spins to relax; including a
magnetic reordering in the hcp region, indicated where sym-
bols change from circles to triangles. The blue dotted curve
constrains local moments in the sixth layer to a spin flop con-
figuration like the relaxed transition state. The red dashed
curve corresponds to FM with spins along [001] in layer 6, and
the green dash-dot curve holds these spins antiparallel along
[11̄0].

other degrees of freedom explored above are again re-
laxed. Fig. 3 shows energies versus δ[6] for a full range
of spin flop configurations, from FM aligned with [001]
to collinear AFM along [11̄0]. (All curves show the best
structure found by VASP. A more thorough search may
lower these values.) Spin excitations of the two interface
atoms on the order of 15 meV are sufficient to destabi-
lize the bcc/FM configuration. The small ∆EFM−AFM
in this subspace indicates that the spin ordering tem-
perature will be suppressed near the α−ε interface, espe-
cially when fluctuations are included for other spins in the
multi-layer interface. This suggests that the martensitic
energy barrier at the α−ε boundary could be overcome
by thermal spin fluctuations at as low as room tempera-
ture.

These results motivate the behavior already seen in
α−ε [001] shock kinetics [9, 10, 13] and suggest further
complexity. The coupling between structural dynamics
and thermal magnetic order makes time-resolved shock
experiments in oriented, single-crystal, temperature-
controlled samples of particular interest. Different tem-
peratures may give exponentially different activation life-
times upon metastable compression beyond the equilib-
rium phase line. The sensitivity of the martensitic tran-
sition to local magnetic order also has implications for
molecular dynamics studies. Interatomic potentials with-
out spin dependence will miss changes in the martensitic

barrier at α−ε interfaces because they neglect the asso-
ciated magnetic domain boundary. Thus, they will ei-
ther underestimate the (bulk) nucleation time for [001]-
compressed α-Fe near coexistence, or overestimate ther-
mal activation behavior for the martensitic displacement
within the heterogeneous magnetic domain boundary. If
martensitic displacement at the interface were thermally-
activated, the transformation front would still propagate
by localized defect motion, but a high reacting defect
density might also initiate plastic relaxation. Such be-
havior is not seen in experiment [9, 10] or in barrier-free
atomistic simulations [12].

Existing interatomic potentials give reasonable behav-
ior at the single crystal shock transformation front, where
the martensitic barrier is shown to be small. The correct
transition pathway and one- or two-wave shock structure
are predicted [9, 10, 12], and the c/a ratio [10] and hcp
domain size [11] are consistent with experiment. (Recon-
ciling this agreement with the persistent bulk marten-
sitic barrier found here motivates the calculations for
Figs. 2 and 3.) However, the adiabatic approximation
made here and in deriving the MD interatomic poten-
tials, that of partially separating the coupled magnon and
phonon dynamics, is not strictly applicable given similar
time-scales. A complete understanding of Fe shock ex-
periments may require an integrated spin and molecular
dynamics simulation. Finally, the effects of rapid shock
compression on magnetization and of Faraday’s law are
not included in these simulations. This may suggest more
complex dynamics as well as additional ways to charac-
terize the material evolution under shock.

We provide evidence of magnetostructural coupling in
uniaxially-strained Fe using two approaches: 1. Monte
Carlo treatment of a generalized Heisenberg model fit
to bulk DFT energies, and 2. constrained DFT calcula-
tions of an idealized α-ε interface. We find that thermal
magnetic disorder substantively reduces the bulk marten-
sitic transition barrier, but that it remains sizable even
for large uniaxial compressions. We also establish that
magnetic frustration at the α-ε interface reduces the bar-
rier yet further, explaining the facile and reversible trans-
formation between phases noted in time-resolved single
shock measurements. The shock behavior of Fe may be
unexpectedly sensitive to finite-temperature magnetic or-
der. These effects are absent from existing large-scale,
atomistic studies of shock transformation in Fe. Their
inclusion would improve understanding of the transfor-
mation kinetics, as could experimental study of single
crystal samples at different temperatures.
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