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We provide a theoretical explanation for the optical modes observed in inelastic neutron scattering
(INS) on the bcc solid phase of helium 4 [T. Markovich, E. Polturak, J. Bossy, and E. Farhi,
Phys. Rev. Lett. 88, 195301 (2002)]. We argue that these excitations are amplitude (Higgs) modes
associated with fluctuations of the crystal order parameter within the unit cell. We present an
analysis of the modes based on an effective Ginzburg-Landau model, classify them according to their
symmetry properties, and compute their signature in INS experiments. In addition, we calculate
the dynamical structure factor by means of an ab intio quantum Monte Carlo simulation and find
a finite frequency excitation at zero relative momentum.

PACS numbers: 67.25.-k, 67.80.-s, 67.80.B, 63.20.D

Introduction – The harmonic theory of solids predicts
that the excitation spectrum of a monoatomic Bravais
lattice crystal should consist solely of acoustic phonons.
It is therefore quite surprising that inelastic neutron
scattering measurements have detected gapped optic-
like modes in the bcc phase of solid helium 4 [1–3].
These gapped excitations include a dispersing longitudi-
nal mode [1] and a non-dispersing transverse mode [2–4].
Similar measurements carried out in the hcp phase of 4He
have tentatively identified optic-like modes beyond those
expected for the hcp structure [5]. Previous theories as-
sociated these excitations with non-phononic dipolar [6–
8] and delocalized vacancy modes [5]. These scenarios,
while plausible, do not account for the existence of mul-
tiple gapped modes.Hence, a basic understanding of this
phenomenon is still lacking.

In this Letter, we identify these optical excitations as
amplitude modes of the solid order parameter. Ampli-
tude (“Higgs”) modes appear in many condensed mat-
ter systems and have recently been the focus of intense
experimental and theoretical research. Some notable ex-
amples are superconductors [9–11], cold atoms in opti-
cal lattices [12, 13], and antiferromagnets [14]. However,
such modes are not generally expected in solids. Here
we argue that the large zero point fluctuations in solid
4He allow it to be treated as a three dimensional charge
density wave (CDW) that supports, in addition to the
usual acoustic phonons, gapped amplitude modes.

The phonon spectrum of bcc 4He depends strongly on
quantum effects, and for two reasons. First, the classical
bcc structure is difficult to stabilize with power law po-
tentials, and for Lennard-Jones systems, the only equilib-
rium states are either hcp or fcc [15], at all molar volumes.
Second, the small helium mass leads to large zero-point
fluctuations on the order of 30% of the interatomic dis-
tance [16], well in excess of the Lindemann criterion. Al-
though this does not guarantee a melting transition [17] ,
it provides an indication for the relatively strong density

fluctuations in the BCC phase. This invalidates the use
of real space atomic displacements as small expansion pa-
rameters, and entails significant nonlinear contributions
to the equations of motion. To account for quantum fluc-
tuations, Hartree [18] and self-consistent harmonic the-
ories [19–22] have been used with general success to de-
scribe the experimentally observed acoustic phonon spec-
tra [23, 24]. If strong enough, the nonlinear quantum
lattice dynamics can in principle support excitations be-
yond the acoustic phonons [25]. Physically, the large zero
point motion may allow for density fluctuations within
the unit cell, which are likely responsible for the optical
modes seen in neutron scattering.

A natural question is then how to construct a linear
theory for the excitations of bcc 4He. To address this
problem, we note that the large spread of the atomic
density profile within the unit cell leads to suppression of
high lattice harmonics. This is in sharp contrast with the
classical picture of a crystal with well localized atoms, for
which all lattice harmonics are sizable. It may therefore
be justified to neglect high harmonics and consider only
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FIG. 1. (a) A one-dimensional CDW is modulated at pri-
mary Bragg vectors ±Q, with Fourier amplitudes ρ±. Higher
harmonics are strongly suppressed. Real space oscillations of:
(b) the acoustic phonon and (c) the amplitude mode.
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the Fourier weight corresponding to the primary Bragg
vectors. The resulting description of the solid is then
in terms of a CDW, whose spectrum naturally contains
both acoustic phonons and amplitude modes (see Fig. 1).

Ginzburg-Landau theory – In constructing the phe-
nomenological Ginzburg-Landau theory we make two
main assumptions. First, the gapped modes are pre-
sumed to result from density fluctuations (and not, e.g.,
from fluctuations related to nearby superfluid order).
Second, we assume the density dynamics is dominated
by a small number of primary Bragg vectors. Our results
follow from these assumptions combined with symmetry
considerations. Hence we expect them to be robust and
apply beyond the specific choice of the phenomenological
model used.

For a solid with large density fluctuations, the GL free
energy functional can be written as an expansion in pow-
ers of the deviation of the particle density from its aver-
age value, δρ(r) = ρ(r)− ρ0 [26, 27],

FGL[δρ(r)] =

∫
d3r d3r′ δρ(r′)χ−1(r − r′) δρ(r)

−B
∫
d3r [δρ(r)]

3
+ C

∫
d3r [δρ(r)]

4
.

(1)

The charge susceptibility kernel χ(r − r′) must respect
the underlying rotational symmetry and support an in-
stability towards a CDW at a Bragg vector of magnitude
G. These considerations are fulfilled by taking

χ−1(r − r′) = 1
2

[
R+ v2(∇2 +G2)2

]
δ(r − r′) (2)

for which the quadratic term in Eq. (1) is minimized for
all wavevectors Q of length G. For R < 0, any Fourier
component of the density with |Q| = G contributes a
negative free energy, thus leading to a CDW instability.
The wavevector pattern {Qi} selected is then determined
by higher order terms in FGL.

As shown in Refs. [26, 27], the cubic term in FGL

prefers structures which maximize the number of equilat-
eral triangles which can be formed from the {Qi}. For
three-dimensional crystals, this selects fcc in reciprocal
space, hence bcc in real space. The density profile of the
CDW is then δρCDW(r) =

∑
G ρG eiG·r, where the sum

runs over the twelve primary Bragg vectors of the bcc
lattice. Since ρ(r) is real, we must have ρG = ρ∗−G,
hence the total number of real degrees of freedom is
twelve, as opposed to three in the harmonic lattice theory.
For the minimum energy configuration, ρG can be cho-
sen to take a uniform (G-independent) mean field value
ρG = δρ̄. Excitations are then obtained by studying dy-
namical fluctuations of the density about the mean-field
solution.

Excitation spectrum – In order to study excitations, we
consider the time-dependent GL Lagrangian density

L =
1

γ

(
∂ δρ(r, t)

∂t

)2
−FGL[δρ(r, t)] , (3)
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FIG. 2. Excitation spectrum for the GL theory of BCC 4He.
GL parameters are chosen as R = 0.05, B = C = 1 and
v = 1.5. The momentum transfer q is chosen relative to
the principal Bragg vector G = {1, 1, 0} in the (a) longi-
tudinal q = (q, q, 0) and (b) transverse q = (0, 0, q) direc-
tions. Solid (dashed) lines correspond to INS active (inactive)
modes. Modes labelled in panel (a) by their irreps and mode
degeneracies at q = 0.

where FGL is the free energy defined in Eq. (1). Note
that since the density is real, (∂tρ)2 is the lowest order
dynamical term that can be constructed. In principle,
dissipative terms involving first order time derivatives are
also allowed. These terms originate from processes in
which gapped modes decay to acoustic phonons and lead
to broadening of the line shapes. Experimentally, the
modes are found to be sharp and hence we will neglect
this effect in our phenomenological approach.

The excitation spectrum is obtained by linearizing the
Euler-Lagrange equations with respect to the fluctua-
tions ηG(q, ω) = ρ(G + q, ω) − δρ̄. Diagonalizing the
resulting bilinear form yields the linear mode eigenfre-
quencies ωα and eigenvectors ξα, as discussed in the Sup-
plementary Material (SM). The longitudinal and trans-
verse excitation spectrum in the vicinity of a principal
Bragg vector is shown in Figs. 2a and 2b. In addition
to the three acoustic phonon branches the spectrum also
contains nine gapped optical modes.

Symmetry classification – At zero relative momentum,
q = 0, the normal modes can be classified according to ir-
reducible representations (irreps) of the octohedral group
Oh. In Fig. 2a we label the different modes according to
their irreps. We find that the two lowest gapped modes
are one s-wave and three d-wave T2g modes. When the
GL parameter R is below a critical value R∗, the d-wave
mode is lower in energy than the s-wave modes; this or-
der is exchanged for R > R∗. This is the only qualitative
feature of our analysis that depends on the precise value
of the GL parameters.

Interestingly, the dxy mode is approximately disper-
sionless in the transverse direction, q = qẑ, as seen in
Fig. 2b. This behavior, seen experimentally [2, 3], can
be traced back to the reciprocal space structure of the
mode depicted in Fig. 3, which has non vanishing am-
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(a) s-wave (b) d-wave

(c) dxy-wave time evolution

FIG. 3. Reciprocal space structure of the (a) s-wave and (b)
d-wave normal modes at the primitive Bragg vector. Red
(blue) dots correspond to positive (negative) amplitudes ηG.
(c) Real space evolution of the density for the dxy mode at
q = 0, at different instants in time.

plitude ηG only for G in the z = 0 plane. As a re-
sult, G · q = 0, and the charge susceptibility kernel
χ̃−1(G+q) = 1

2R+ 1
2v

2((G+q)2−G2)2 = 1
2 (R+v2q4) has

a weak dependence on the relative momentum q, leading
to an excitation that disperses only as q4.

In Fig. 3c we plot the real space density profile cor-
responding to the dxy mode at q = 0. The images are
projected onto the z = 0 plane and track the time evo-
lution at quarter and half of the oscillation period T .
Note that the oscillations are quadrupolar deformations
of the density within the unit cell such that the mode
can support a finite frequency oscillation at zero momen-
tum. This behavior is analogous to optical phonons in
polyatomic crystals, which involve relative motion of the
atoms within a unit cell.

Dynamical structure factor – In order to compare
with the experimental inelastic neutron scattering (INS)
data we compute the dynamical structure factor (DSF),
SG(q, ω) = Im

〈
δρG(q, ω) δρ−G(−q,−ω)

〉
. This is read-

ily computed via canonical quantization of the normal
modes (see SM), yielding

S(G+ q, ω) =
∑
α

γMG,α(q)

2ωα(q)

{
n(ωα) δ

(
ω + ωα(q)

)
+
(
1 + n(ωα)

)
δ
(
ω − ωα(q)

)}
,

(4)

where n(ε) = 1
/

[exp(βε)−1] is the Bose function, and the
matrix element MG,α(q) expresses the overlap squared
between normal mode α and the density operator. For a
given wavevector, only certain normal modes are INS ac-
tive, while the remaining modes have vanishing MG,α(q).
This is illustrated in Fig. 2, where INS active (inac-
tive) modes are plotted with solid (dashed) lines. As

a check, the DSF analysis predicts that the longitudi-
nal (transverse) acoustic phonon are INS inactive for q
vector which are orthogonal (parallel) to the Bragg vec-
tor G. This reproduces well-known selection rules of the
classical harmonic theory of solids [28]. In addition, our
analysis uncovers new selection rules that apply to the
gapped modes.

The DSF in Eq. (4) satisfies the sum rule [29],

∞∫
−∞

dω ω S(G+ q, ω) = γ . (5)

Hence, although our model contains more phonon modes
than predicted by the harmonic theory of solids, their to-
tal spectral weight is constrained. In particular, the dis-
tinction between a crystal and a CDW is qualitative in
nature and, as such, there must be a smooth mechanism
by which the amplitude modes disappear as the solid
becomes more classical. Indeed, in this limit, the am-
plitude modes become increasingly energetic, and their
spectral weight is accordingly reduced to satisfy the sum
rule. As a related observation, if our GL formalism were
enlarged to include non-primary Bragg vectors, more op-
tical modes would appear, but of very high energy and
small spectral weight.

Quantum Monte Carlo – We complement the phe-
nomenological GL analysis with an ab initio path integral
quantum Monte Carlo (QMC) simulation. We model the
4He atoms with the following Hamiltonian,

H = −λ
N∑
i=1

~∇2
i +

∑
i<j

V (ri − rj), (6)

where λ = 6.0596 Å
2

K for 4He and V (r) is the Aziz
potential, which is believed to accurately capture the
inter-atomic potential energy of 4He atoms [30]. We set
the simulation parameters to lie within the bcc region
of the 4He phase diagram. Explicitly, the temperature
is set to T = 1.6 K and we consider N = 2000 4He
atoms at atomic density n0 = 0.02854 Å

−3
(molar vol-

ume v0 = 21.1 cm3). The bosonic world-lines configura-
tions are sampled employing the continuous space worm
algorithm [31] in the canonical ensemble. Our main ob-
servable is the charge susceptibility structure factor eval-
uated at Matsubara frequency ωm,

χ(q, iωm) =
1

Nβ

〈 ∣∣∣∣∣∣
β∫

0

dτ eiωmτ
N∑
i=1

eiq·ri(τ)

∣∣∣∣∣∣
2 〉

. (7)

where ri(τ) denotes the position of the ith particle at
imaginary time τ .

At finite relative momentum the spectrum is gapped
up to the energy scale of the acoustic phonon and hence
the dispersion relation can be extracted by fitting the
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FIG. 4. Dynamical structure factor at the primitive Bragg
vector G = {1, 1, 0}. The spectral function displays a clear
resonance at ω = 0.5(1) meV that we attribute to fluc-
tuation of the CDW order parameter. The first moment
I1 =

∫
dω ω S(ω,G) obeys the f -sum rule Ie1 = G2/2m = 2.43

meV. The numerical value, In1 = 2.6 meV, deviates by 7%
from the exact result. Inset: Dispersion of lowest energy lon-
gitudinal excitation computed with QMC simulations (blue),
compared to longitudinal acoustic phonon measured in INS
experiments (red) [1]. The arrow indicates the optical mode.

DSF to the asymptotic form χ(q, τ � 1/∆) ∼ f(q, τ)
where f(q, τ) = A(q)(e−τ∆(q) + e−(β−τ)∆(q)). In addi-
tion, we compute the excitation spectrum by performing
a numerical analytic continuation on the imaginary time
QMC data using the MaxEnt method [32]. We find good
agreement between the excitation spectra computed via
these two methods.

We focus on the longitudinal mode along the line con-
necting the Brillouin zone origin to a primitive Bragg
vector. The resulting dispersion relation is depicted in
the inset of Fig. 4. For comparison we also display the
experimental INS data [1] and find good agreement with
the numerical computation. We were unable to resolve
any gapped modes at finite relative momentum. This is
likely due to the small spectral weight of the optical mode
relative to the acoustic phonons. Experimentally, the ra-
tio is about 1/10. A previous QMC study [33] computed
the acoustic dispersion at finite wave vectors, and thus
did not detect the optical modes.

To overcome this problem we compute the DSF at
a Bragg momentum, where the weight of the acoustic
phonons is expected to vanish. To extract the energy
scale of the amplitude mode we fit the imaginary time
QMC data to the following form χ(G, τ � 1/∆) ∼
χ0 + f(G, τ). The extensive constant χ0 takes into ac-
count the crystal order parameter. A typical fit of this
type is shown in the SM. As before, we also perform
numerical analytic continuation of the QMC data, and
obtain consistent results.

The results of the numerical analytical continuation
are presented in the main panel of Fig. 4. We find the
spectrum is composed of a gapped resonance peaked at

ωH = 0.5(1) meV, see also SM. This central result demon-
strates numerically the presence of a gapped mode at zero
relative momentum in a monoatomic Bravais lattice. In-
terestingly, this value is smaller than the experimentally
measured frequency ωexp

H = 1.2 meV. Our numerical cal-
culation, therefore, predicts an additional and lower en-
ergy gapped mode, beyond those found experimentally.
Such a mode would have gone undetected, since the ex-
perimental setup for the vast majority of existing mea-
surements was not designed to detect phonons with en-
ergies below 1 meV [34, 35].

Could the experimentally observed optical mode be
due to a two phonon process [36]? To assess this pos-
sibility, we have analyzed a harmonic lattice model with
up to third-neighbor interactions whose parameters are
adjusted to match the experimentally observed phonon
frequencies at high symmetry points (P, N, and H) in the
Brillouin zone [23], and to be stable in the vicinity of the
zone center. We thereby obtain a dynamical matrix

Φ̂αβ(k) =
∑
R 6=0

(1− cosk ·R)
∂2v(R)

∂Rα ∂Rβ
, (8)

with ∂α∂β v(R) =
(
δαβ−R̂αR̂β

)
R−1v′(R)+R̂αR̂β v′′(R).

Our model is specified by six parameters, which may be
taken to be the values of v′(R) and v′′(R) at each of the
first three nearest neighbor distances. We computed the
phonon band structure and the dynamic structure factor
within this harmonic theory (see SM for details). We find
that the peak in the two-phonon contribution to S(G, ω)
lies at a frequency of ω2−ph ' 4.3 meV, and furthermore
the peak amplitude of this two-phonon contribution is
0.6% of the peak value in Fig. 4. We therefore reject this
possibility.

Discussion – Our results motivate future experimental
studies of the excitation spectrum of solid 4He. Specifi-
cally, it would be interesting to determine the symmetry
properties of the gapped modes. Breaking a sub group of
the Oh crystal symmetry group, e.g. by shearing or com-
pressing the lattice would lift the symmetry enforced de-
generacy. The resulting splitting of the phonon branches
could be detected in INS experiments.

More broadly, beyond 4He, our analysis may be rele-
vant to other examples of strongly fluctuating quantum
solids. In that regard, one promising future theoreti-
cal and experimental research direction would be to ex-
plore the effect of reduced dimensionally on the ampli-
tude modes such as in the solid phase of two dimensional
dipolar Bose gases [37]. As a concrete prediction, the Lin-
demann parameter for bcc solid 3He is even larger than
that of 4He [16], and therefore we predict that lower en-
ergy optical modes should be seen in solid 3He. This
would also serve as an experimental confirmation that
the optical modes in 4He are strictly due to charge fluc-
tuations and not to gapped fluctuations of the nearby
superfluid.
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Summarizing, we have identified the gapped modes ob-
served in INS experiments on the bcc phase of solid 4He
with amplitude fluctuations of the crystal order. The
properties of the gapped modes were analyzed though an
effective GL theory and an ab-inito QMC simulation. In
addition, we propose experimental tests for our predic-
tions in solid 4He and quantum solids in general.
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