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We study the topological properties of elementary excitations in a staggered px±ipy Bose-Einstein
condensate realized in recent orbital optical lattice experiments. The condensate wave function may
be viewed as a configuration space variant of the famous px+ipy momentum space order parameter of
strontium ruthenate superconductors. We show that its elementary excitation spectrum possesses
Dirac bosons with π Berry flux. Remarkably, if we induce a population imbalance between the
px + ipy and px − ipy condensate components, a gap opens up in the excitation spectrum resulting
in a nonzero Chern invariant and topologically protected edge excitation modes. We give a detailed
description on how our proposal can be implemented with standard experimental technology.

Introduction. In quantum gases, the current focus
on topological features so far has been directed towards
fermionic atoms, whose phase diagrams often are easily
obtained, thanks to extensive knowledge derived from
analogous electron models [1, 2]. Consorted efforts in
cold atom physics aim at simulating famous electronic
topological models that are non-interacting but possess
geometric phases [3–8] in recent years. Synthetic
magnetic flux or spin-orbit coupling are achieved by
experimental techniques of laser-induced tunneling [3–
7, 9] and lattice modulation techniques [8, 10, 11].
With regard to interacting systems, fermionic superfluid
(superconducting) phases with salient orbital symmetry
(such as p or d wave) [12, 13] have been actively searched
for decades. They support edge-state fermions featuring
non-Abelian braiding statistics [14] within the energy gap
opened up along the Fermi surface.

Recently, the search for similar phenomena in bosonic
systems, which are easier to implement with cold atomic
gases, attracts broad interest. Several theoretical ideas
[15–17] have been put forward to realize topological
bosonic elementary excitations. One can utilize bosons
condensed in the minimum of the lowest single-particle
Bloch band, which is endowed with topological character
by means of a synthetic gauge field [15, 16]. An
alternative approach is based on the formation of a
background vortex-lattice condensate with optical phase
imprinting [17]. Both types of proposals imply significant
experimental complexity.

In this Letter, we find that because of the interplay of
interaction and orbital symmetry, topological elementary
excitations naturally occur in a staggered chiral bosonic
px ± ipy superfluid discovered in a series of recent
experiments at Hamburg [18–20]. We show that it

supports Dirac bosons with π Berry flux in a higher lying
branch of excitation spectrum. Surprisingly, we find that
via adjusting the population imbalance of the px + ipy
and px − ipy components, a topological phase transition
occurs, accompanied by a bulk gap opening up near the
Dirac cones. This leads to finite energy in-gap edge
excitations for the finite system. Most strikingly, the
topologically protected edge excitations are generated by
the background chiral superfluid, which distinguishes this
work from others that rely on engineering of the single-
particle band structure. Below, we will discuss in detail
how the required population imbalance tuning can be
readily achieved with standard experimental techniques.

We thus realize a bosonic counterpart of topological
chiral fermionic superfluidity, which is reminiscent of the
famous example of topological superconductivity: the
fermionic px + ipy state, believed to occur in strontium
ruthenates [21, 22]. Their shared features include
(1) both bosonic and fermionic superfluid states have
nonzero global orbital angular momentum, and (2) both
support topologically protected in-gap edge excitations.
However, a fundamental difference exists. The fermionic
state has a bulk gap above the ground state and supports
zero modes at material edges or in vortex cores, while
the bosonic superfluid has gapless Nambu-Goldstone
modes immediately above the ground state due to the
continuous global U(1) gauge symmetry breaking and
the topological edge states occur inside a bulk gap at
high energies.

Model. We employ a generalized version of the lattice
geometry employed in earlier experiments [18–20] given
by the potential V (x, y) = VH(x, y) + VS(x, y) with

VH(x, y) = −V1
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FIG. 1: (color online). (a) The checkerboard potential VH comprises two classes of wells denoted A and B. (b) Geometry of
the added square lattice VS for the simplest case η = 0. (c) The complete lattice V = VH + VS comprises four classes of sites
denoted as A1, A2, B1, and B2. The gray rectangles in (a), (b), (c) indicates the unit cells of VH , VS, and V , respectively.
(d), The potential V is shown along the dashed square in (c). The s and p orbitals accounted for in the tight binding model
are indicated. (e) Laser beams at wavelengths λ, λ1 and λ2 are coupled to the interferometric setup for the formation of V .
Their linear polarizations (orthogonal or parallel with respect to the xy plane) are indicated by white arrows. The phase β in
Eq. (2) is servo-controlled by a movable mirror (M) and a photo detector (PD), in order to tune ∆Vsp in Eq. (3). (f), Contour
plot of the lattice potential V = VH + VS . The inner blue and middle black solid squares denote the unit cells of the lattice
potential VH and V , respectively. The outer red solid square denotes the unit cell of the predicted order parameter. (g), The
first Brillouin zones corresponding to the unit cells shown in (f).

VS(x, y) = V2
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2
kLy)

]
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Here, VH is the original lattice of the Hamburg
experiments, which provides deep and shallow wells,
denoted by A and B (see Fig. 1(a)). This lattice
is formed by two interfering optical standing waves
aligned along the x- and y-axes, respectively, with linear
polarizations parallel to the z-axis, wavelength λ (with
kL = 2π/λ) and relative phase β, as detailed in Refs. [18–
20, 23]. We superimpose an additional weak (|V2| ≪
|V1|) conventional square lattice potential VS as used
in many experiments, with wave number 1+2η

2
kL and

η ∈ {0, 1, 2, ...} (see Fig. 1(b) for the case η = 0). VS acts
to subdivide the deep A-sites into two classes (A1, A2) of
slightly different depth.

In the tight-binding regime, by taking into account px
and py orbitals in the deep (A1, A2) and s orbitals in
the shallow wells (B1, B2), we model our system by the
extended Hubbard Hamiltonian Ĥ = Ĥ0 + Ĥint, where

Ĥ0 = −Jsp
∑

r,µ

[

b̂†µ,rb̂s,r+eµ
− b̂†µ,rb̂s,r−eµ

+ h.c.
]

+J‖
∑

r,µ

[

b̂†µ,rb̂µ,r+ex+ey
+ b̂†µ,rb̂µ,r+ex−ey

+ h.c.
]

+J⊥
∑

r,µ

[

b̂†µ,rb̂µ̄,r+ex+ey
− b̂†µ,rb̂µ̄,r+ex−ey

+ h.c.
]

+
∑

r

[

−∆Vsp +
1

2
∆Vpp(−)rx+ry

]

n̂p,r, (2)
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]
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3
L̂2
z,r

}

. (3)

Here, b̂s,r′ and b̂µ,r′are bosonic annihilation operators for
s and pµ (µ = {x, y}) orbitals at site r

′. The vector r =
(rx, ry)λ with integer rx and ry denotes the position of p
orbitals, while s orbitals are located at r+ eµ with ex =
(λ/2, 0) and ey = (0, λ/2). µ̄ = {x̄, ȳ} = {y, x}. The
number and the on-site angular momentum operators are
respectively given by n̂s = b̂†sb̂s, n̂p = b̂†xb̂x + b̂†y b̂y, and

L̂z = −i(b̂†xb̂y − b̂†y b̂x). The ∆Vpp term arises from the
added potential VS , which induces a staggered on-site
energy shift for p orbitals at A sites.

For the single-particle Hamiltonian H0, the band
minima are located at X± = (1,±1)kL/2 independent
of VS . This yields a finite-momentum condensate for
weakly interacting bosons. The corresponding unit cell
of the order parameter is enlarged by a factor of

√
2

and rotated by 45◦ with respect to that of the lattice
potential V = VH + VS , hence is composed of four
A and four B sites, as illustrated by the red solid
square in Fig. 1(f). Ferro-orbital interaction favors a
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special phase correlation between the two band minima,
leading to a staggered on-site orbital angular momentum
distribution with the relative phase between px and
py orbitals fixed at ±π/2 [24, 25]. Figure 2(a) shows
the schematic representation of the ground-state order
parameter. While previous studies concentrated on the
chiral nature of such a p orbital bosonic superfluid, the
present study investigates the elementary excitations on
top of it instead. Remarkably, we find that interactions
among bosons not only generate a ground state with
chiral orbital order as is understood and experimentally
confirmed, but also give rise to topological quasiparticle
excitations to be described in the following.
Topological elementary excitations. We follow the

standard number-conserving approach to obtain the
excitation spectra [26]. Firstly, we focus on the symmetry
of the Bogoliubov-de Gennes (BdG) Hamiltonian H(k).
The presence of the staggered chiral orbital order
breaks both time reversal and original lattice translation
symmetries. Nevertheless, for VS = 0, via choosing
a specific global phase of the order parameter H(k)
is invariant under the combined symmetry operations
of time reversal T and lattice translations Θ± along
the x ± y directions by λ/

√
2: Θ±T H(k)(Θ±T )−1 =

H(−k). The combined symmetries are described by
anti-unitary operators Θ±T and are broken for VS 6=
0. As will become clear later, this property plays an
important role in the topological classification. The
Hamiltonian is then diagonalized by a paraunitary matrix
Tk as T †

k
H(k)Tk = Ek, with eigenvalues contained

in the diagonal terms of the diagonal matrix Ek.
To characterize the topological feature of the bosonic
excitations, we follow the prescriptions of Refs. [27, 28]
to define a topological invariant for the j-th excitation
band in the reduced first Brillouin Zone (RFBZ) denoted
by the red solid line in Fig. 1(g) as

Cj =
1

2π

∫

RFBZ

d2kBj(k), (4)

where the Berry curvature Bj and Berry connection Aj,µ

are defined as Bj(k) ≡ ∂kx
Aj,y(k) − ∂ky

Aj,x(k) and

Aj,µ(k) ≡ iTr[ΓjT
−1
k

τz(∂kµ
Tk)]. Γj is a diagonal matrix

with the j-th diagonal term equals to 1 and other terms
are 0, and [τz]ij equals to δij if i = 1, ..., 12 and −δij
otherwise [26].
We first consider the case of VS = 0 corresponding

to the recently reported experiments [18–20]. In this
case, A1 and A2 sublattice sites are equivalent, and
therefore are equally populated in the p orbital bands
for the ground state. Fig. 2(b) summarizes numerical
results for the parameters at Jsp = 0.12Erec, J‖ =
0.07 Jsp, J⊥ = 0.15 Jsp, ∆Vsp = 0.3 Jsp, Us =
0.24Erec, and Up = 0.12Erec, all in units of Erec =
h̄2k2L/(2m). Only the lowest 8 energy bands along the
high-symmetry lines are shown. These fully connected
bands are gapped from the other 4 topologically trivial

FIG. 2: (color online). (a) The schematic picture of the
order parameter in one unit cell denoted by the outer solid
square. The integer number ν denotes the phase of the orbital
wavefunction as ν π/2. Specifically, p orbitals are located at
the four corners of the inner square, while other sites are
occupied by the s orbitals. (b) Excitation spectra for VS = 0
along the high-symmetric lines in the first Brillouin zone
marked by the red diamond in the lower inset. Two Dirac
points are denoted by D+ and D−. The parameters used in
numerics are Jsp = 0.12Erec, J‖ = 0.07 Jsp, J⊥ = 0.15 Jsp,
∆Vsp = 0.3 Jsp, Us = 0.24Erec, Up = 0.12Erec, and ∆pp = 0.
The mean boson density corresponds to one particle per
orbital. Here, only the lowest 8 bands are shown. (c) Berry
curvature of the first band of elementary excitation. (d) The
same as (b) except a bias square optical lattice potential
VS is turned on to induce a population imbalance between
px + ipy and px − ipy components, which opens a gap around
the Dirac points leading to topological elementary excitations
and nonzero Berry curvature for the phonon mode shown in
(c). Here, the only difference in parameters used in numerics
is ∆pp = 3∆sp.

higher energy bands due to the relatively larger contact
interaction energy for the s orbitals as compared to the
p orbitals. Meanwhile, similar to a conventional Bose-
Einstein condensate, the spontaneous breaking of U(1)
phase symmetry guarantees the emergence of a phonon
mode with linear dispersion close to k = 0. We find the
Berry curvature for this phonon mode to be negligible.

Surprisingly, an interesting feature in the excitations
appears. Focusing on the 8 bands shown in Fig. 2(b),
the 4-th and the 5-th bands are connected only at the
four Dirac points located on the straight lines ΓX ′

± in
momentum space. Two of them are denoted as D± and
the other two correspond to their time-reversal points.
Each of the Dirac points is associated with a π Berry
flux such that in its vicinity the excitation spectrum
depends linearly on momentum. This feature, which is
analogous to fermionic topological semimetals studied in
Refs. [29, 30], may be measured by applying Aharonov-
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Bohm interferometry [31, 32].

Next, we consider the general case with VS 6= 0. The
order parameter shows the same phase correlation among
s and p orbitals as for VS = 0, which is illustrated in
Fig. 2(a). The nonzero bias potential VS causes the
A1 and A2 lattice sites to be inequivalent and hence
induces a population imbalance between them. No
matter how small VS is, a topological phase transition
occurs. This is because the combined time reversal and
discrete lattice translation symmetry Θ±T is broken for
both the Hamiltonian and the order parameter, leading
to a topological bulk gap on all Dirac points, as shown in
Fig. 2(d). For VS 6= 0, the total 12 excitation bands are
separated into three groups. The four connected middle
bands (5th-8th) are isolated by gap from four lower bands
shown in Fig. 2(d) and four highest bands which are not
shown. The summation of their topological invariants
are well defined. Using Eq. (4), we confirm that the

middle four bands are topological with |∑8

j=5 Cj | =
2. To further elucidate their topological behavior, we
investigate the chiral edge states of the system for a
cylinder geometry with a periodic (or open) boundary
condition in the x + y (or x − y) direction. For this
finite system, the numerically obtained excitation spectra
are plotted in Fig. 3. It clearly shows that topological
edge states appear within the energy gap, connecting the
upper and lower bulk states. The existence of two chiral
edge states on each edge is consistent with the topological
invariant being equal to 2 [1].

Refocusing on the phonon mode, we notice a striking
feature appearing when VS 6= 0. Different from the case
of VS = 0, the bias potential VS induces a population
imbalance for p orbitals on A1 and A2 sites, leading
to a nonzero total orbital angular momentum together
with a nonzero Berry curvature for the phonon mode.
Specifically, as shown in Fig. 2(c), B1(k) is zero at the
Γ point and negative everywhere else in the k-space
area displayed, a situation implicating the existence of
a phonon Hall effect [33].

Based on the above results, we understand that the
population imbalance between the clockwise and the
counter-clockwise orbiting condensate components is key
to the appearance of topological elementary excitations
in the p band bosonic superfluid. The underlining
symmetry for characterizing this imbalance is Θ±T . To
verify that this is indeed generally true rather than
being specific to the form of VS used, we apply two
other methods capable of opening a bulk gap close to
the Dirac points [26]. The first one is to introduce an
asymmetry between the s-p orbital hopping amplitudes
along two orthogonal directions, e.g., along the x-
and y-axis, which corresponds to adding the following
term Ĥ1 = −∆Jsp

∑

r

[

b̂†s(r)b̂y(r + ey) + b̂†s(r)b̂y(r −
ey) + h.c.

]

to the system Hamiltonian. The second
one is to generate an on-site rotation described by

FIG. 3: (color online). Elementary excitation spectra for a
finite system with a cylinder geometry. A periodic (open)
boundary condition is assumed in the x+ y (x− y) direction.
One unit cell of the finite system contains 40 copies of the
unit cell of the order parameter. The lattice potential and
interaction parameters are the same as that used in Fig. 2(d).
Solid black and blue lines denote the bulk excitation spectra
and the chiral edge states, respectively.

the Hamiltonian Ĥ2 = iΩz

∑

r

[

b̂†x(r)b̂y(r) − b̂†y(r)b̂x(r)
]

.
Our numerical calculations indeed confirm that the first
method creates a trivial gap because it does not break
the Θ±T symmetry, while the second method relying on
the on-site rotation breaks T , thus breaks Θ±T , giving
rise to similar topological excitation bands as shown in
Figs. 2(d) and 3.

Experimental realization and detection. A schematic
experimental setup for investigating our proposed study
is shown in Fig. 1(e). The weak VS can be realized
by including two additional laser beams with linear
polarizations within the xy plane and wavelengths λn =
λ′ + δλn with λ′ ≡ 2

1+2η
λ. Take λ = 1064 nm and

η = 1, λ′ ≈ 709 nm, a wave length for which laser light
is readily available. The small quantities δλn, n ∈ {1, 2}
are chosen according to the distances Ln in Fig. 1(e), in
order to precisely adjust the relative positions of both
lattices. Assuming L1 = L2 = 20 cm a shift of VS by half
a lattice constant amounts to c/δλn = 375MHz with
c denoting the speed of light. Technically, it is easily
possible to fix c/δλn with a precision of a few MHz such
that the relative positions of the lattices can be adjusted
to better than a few nm [26]. As discussed in Ref. [34],
the bias potential may also induce a staggered on-site
coupling between px and py orbitals. However, such a
coupling is proportional to the second derivative of the
bias lattice potential, which is negligible for the weak
lattice potential required here, e.g., ∆Vpp ∼ Jsp. The
topological features of the elementary excitations can
be experimentally measured via coherently transferring
a small portion of the condensate into an edge mode
by stimulated Raman transitions [26, 35]. As the
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relation between the original bosons and the elementary
excitations are connected by the paraunitary matrix Tk,
the interference of the edge mode and the condensate
wavefunction is predicted to form a density wave for
the original bosons along the edge [26], by the same
mechanism discussed in Ref. [16].
Conclusion. We study the elementary excitations of

the staggered chiral px ± ipy orbital superfluid realized
in the Hamburg experiments [18–20]. We find that
for the experimentally implemented lattice configuration,
the elementary excitations are not topologically gapped
due to the presence of the combined symmetries (Θ±T ),
whose topological classification falls into the BDI class [1]
after taking into account the intrinsic particle-hole
symmetry of τzH(k). Four Dirac cones are found in the
higher lying excitation spectrum. In constrast, when a
bias square lattice potential imbalances the px + ipy and
px − ipy components, a striking, unexpected topological
phase transition appears. The resulting superfluid state
supports topological gapped bulk elementary excitations
accompanied by in-gap topologically protected edge
excitations. This finding extends current research on
topological phases of fermionic atoms and electrons
to weakly interacting Bose atoms. Most significantly,
the chiral orbital order and the topological elementary
excitations we discuss are driven by the many-body
interaction, which is in contrast to those requiring single-
particle Bloch bands with topological character.
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[9] Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature
471, 83 (2011).
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[18] G. Wirth, M. Ölschläger, and A. Hemmerich, Nature
Physics 7, 147 (2011).
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