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Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that
emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to
compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo
simulations. The key idea is to deform the path integration domain to a complex manifold where the
phase oscillations are mild and the sign problem is manageable. We use the previously introduced
“contraction algorithm” to create a Markov chain on this alternative manifold. We substantiate our
approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement
with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce
is generic and in principle applicable to quantum field theory albeit very slow. We discuss some
possible improvements that should speed up the algorithm.

INTRODUCTION

Except for weakly coupled systems and isolated solu-
ble examples, field theoretical/many-body systems are
intractable by analytical means. In those cases numerical
Monte Carlo (MC) integration is the method of choice.
The computation of equilibrium thermodynamic proper-
ties, including equal time correlators, can be recast as the
computation of certain well-behaved path integrals, well
suited for MC integration, where the integrand decays
quickly at large value of the field and is positive every-
where. Some other properties like energy eigenvalues and
matrix elements of low lying states can also be recast
as well behaved path integrals by analytically continu-
ing time to the imaginary direction, effectively using an
euclidean space instead of the original Minkowski space
formalism. The success of MC methods in lattice field
theory is based on this approach. There are, however, a
number of observables that cannot be formulated in this
way. They include, for instance, viscosity, conductivity
and other transport coefficients [1]. They are pervasive
in many sub-fields of physics such as heavy ion collisions,
neutron star physics, condensed matter and mesoscopic
physics and cold atom traps. These observables have in
common the fact that they are defined through the ther-
mal equilibrium value of real time (Heisenberg picture)
operators of the form

〈O1(t)O2(t′)〉β = Tr(e−βHO1(t)O2(t′)). (1)

In thermal equilibrium these correlators depend only on
the time difference t − t′. Giving the obvious impor-
tance of these observables, several attempts have been
made in the past to compute them with MC techniques.
For instance, the complex Langevin method was used in
field theoretical models and in quantum mechanics [2–5].
Despite some early success it seems that the complex
Langevin method does not converge when the maximum
time difference between operators (t− t′) is larger than
the inverse temperature β = 1/kBT . Other attempts
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FIG. 1. The Schwinger-Keldysh contour (left) and its dis-
cretized form (right) in the complex time plane. ∆tn refers
to either ±a or −ia depending on the location of n on the
contour.

have also been made in quantum chemistry [6–9].
Real time correlators of the form shown in (1) can be

expressed as a path integral using the Schwinger-Keldysh
formalism [10, 11]. The path integral version of this
formalism is summarized in the equations:

〈O1(t)O2(t′)〉β = Tr[O1(t)O2(t′) e−βH ]

= Tr[O1(0) e−iH(t−t′)O2(0) eiH(t−t′+iβ)]

=
1

Z

∫
Dx eiSSK [x]O1(t)O2(t′), (2)

where SSK =
∫
C dtL[x] is obtained from the original

action S by analytically continuing the time t to values
on the contour show in Fig. 1. [12]

We will describe our method using the example of
a single non-relativistic particle of mass m moving in
one dimension under the influence of a potential V (x).
The discretized version of the Schwinger-Keldysh action
becomes

SSK =

N∑
n=0

∆tn

[
1

2

(
xn+1 − xn

∆tn

)2

− V (xn+1) + V (xn−1)

2

]
(3)

where N = 2(n1 + n2) (see Fig. 1) and ∆tn equals either
a,−a or −ia depending whether tn lies on the positive
direction on the real axis, the negative direction on the
real axis or on the segments in the imaginary direction,
respectively.
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The path integral in the Schwinger-Keldysh formalism
poses a tremendous problem for a MC integration since
the integrand is very oscillatory leading to subtle can-
cellations that are hard for the MC method to capture.
This difficulty, present whenever the integrand is not pos-
itive definite, is known as the “sign problem”. The most
straightforward approach is to use the reweighting method
where S = SR + iSI = −iSSK is split into its real and
imaginary parts and field configurations distributed ac-
cording to the (positive) probability distribution ∼ e−SR

are used to estimate the observable:

〈O1(t)O2(t′)〉β =

∫
Dxe−SRe−iSIO1(t)O2(t′)∫

Dxe−SRe−iSI

=

∫
Dxe−SRe−iSIO1(t)O2(t′)∫

Dxe−SR

∫
Dxe−SR∫

Dxe−SRe−iSI

=
〈O1(t)O2(t′)e−iSI 〉SR

〈e−iSI 〉SR

≈
∑N
a=1O(xa(t))O(xa(t′))e−iSI(xa)∑N

a=1 e
−iSI(xa)

(4)

where xa(t) are a family of N number of configura-
tions distributed according to the probability distribution
p[x] ∼ e−S[xa] and 〈· · · 〉SR

denotes the average computed
with the real part of S only. The reweigthing method
is useful if the average phase 〈e−iSI 〉SR

is not too small;
otherwise cancellations between the MC estimates of the
numerator and denominator lead to large statistical er-
rors. The value of the average phase is actually used
as a measure of how hard the sign problem is. Notice,
however, that while SR does not depend on the value of
x(tn) for tn belonging to the real part of the contour, SI
does depend on x(tn). Consequently, the value of x(tn)
(and SI) is unconstrained when sampling according to
the measure p ∼ e−SR and the average phase vanishes
identically. Thus, contrary to the usual case where the
reweighting method always converges to the correct result,
perhaps requiring exponential large number of samples,
this method cannot be used in the Schwinger-Keldysh
formalism even when infinite statistics is available!

HOLOMORPHIC GRADIENT FLOW

We attack the sign problem by complexifying the field
variables xi. The goal is to replace the original path inte-
gration domain, RN , with an N (real) dimensional mani-
fold embedded into CN ∼ R2N such that the variation of
SI on this alternative domain (hence the sign problem) is
milder compared to the one on RN and reweighting can
be safely employed. Since the integrands we consider are
free of singularities, a multi-dimensional generalization
of Cauchy’s theorem guarantees that the domain of in-
tegration can be changed without altering the value of
the integral. The only possible impediment to a defor-
mation of the integration region is the behavior of the

integrand at infinity. There are directions in CN such that
SR(z)→∞ as |z| → ∞. The integral over a domain that
asymptotes along these directions is convergent. These
“good” regions are separated by “bad” regions along which
SR → −∞ and the integral diverges. Changes in the
integration region do not alter the value of the integral as
long as the asymptotic behavior is fixed in one of these
“good” regions at all intermediate steps. [13]

We consider a class of manifolds that are generated by
the so-called holomorphic gradient flow equation,

dzi
dτ

=
∂S
∂zi

(5)

(the bar denotes complex conjugation) which “flows” a
given point along a curve parameterized by τ where SR
increases the most and SI remains constant. It is straight-
forward to show that (i) dSR/dτ ≥ 0 where the equality
only holds if zi is a critical point (i.e. dS/dz(zi) = 0), and
(ii) dSI/dτ = 0. Consider the manifold Γ obtained by
flowing every point xi ∈ RN by a fixed amount Tflow. The
monotonicity property (i) implies that the integral over
the manifold Γ is the same as over RN . This is because do-
mains that belong to inequivalent domains of integration
are separated by regions where the integral is ill-defined.
However, for any Tflow, e−SR[zi(Tflow)] ≤ e−SR[xi] and the
integral is never ill-defined. It is worth to mention that the
same property also ensures the absence of the so-called
runaway configurations with arbitrarily large negative
actions [14].

Due to property (i), the flow increases SR and the only
regions with significant statistical weight (∼ e−SR) orig-
inate out of very small regions in RN . In those small
regions SI varies little and therefore, the sign problem
is alleviated in Γ. In fact, in the limit Tflow →∞, Γ be-
comes the appropriate sum of Lefschetz thimbles (multi-
dimensional stationary phase contours) equivalent to RN

over which SI is constant. In other words, the flow zooms
in on the regions where SI varies slowly, which was exactly
the goal that we aimed for to mitigate the sign problem.
However, there is a price to pay: the flow might generate
multiple regions with nearly constant SI , separated by
large action barriers which would cause a multimodal
distribution hard to sample. The problem then reduces
to finding an appropriate value of Tflow such that, on Γ,
SI varies mildly enough to allow reweighting, yet the po-
tential barriers are not too high so that the configuration
space is accurately sampled. This problem depends on
the particular model and the parameters involved.

CONTRACTION ALGORITHM

As we established the domain of integration, Γ, that is
obtained by flowing RN by a fixed Tflow the next step is
to generate a Markov chain on Γ sampling it according
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to the distribution ∼ e−SR . What makes this task chal-
lenging is that Γ is curved and it is not obvious how to
make proposal lying on Γ as there is no local way of char-
acterizing Γ. To overcome this problem in the context of
Lefschetz thimbles, the so-called “contraction algorithm”
was introduced in [15] and was generalized to manifolds
beyond thimbles in [16]. We will use the same algorithm
in our analysis. Let us begin by reviewing it.

We use the fact that the flow equation (5) defines a
one-to-one map between each point zi ∈ Γ and xi ∈ RN
where zi := zi(Tflow) is the solution of (5) with the initial
condition zi(0) = xi, and use xi to parametrize zi. Using
this parameterization we can write∫

Γ

Dz e−S[z]O[z] =

∫
RN

dNx det J e−S[z(x)]O[z(x)] . (6)

where Jij =
(
∂zi
∂xj

)
is the Jacobian associated with the

change of variables from zi to xi and O represents any
observable as, for instance, O1(t)O2(t′). det J is a com-
plex number and accounts for the change in the volume
element as well as the orientation of the tangent plane of
Γ in complex space. The evolution of the Jacobian matrix
Jij with the flow is determined by:

dJij
dτ

=
∂2S[z]

∂zi∂zk
Jkj , J(0) = 1 (7)

with zi(τ) satisfying (5). We can then write

〈O〉 =

∫
dNx e−S̃[z(x)]O[z(x)]∫

dNx e−S̃[z(x)]

=

∫
dNx det Je−S̃Re−iS̃IO∫

dNx e−S̃R

∫
dNx e−S̃R∫

dNx e−S̃Re−iS̃I

=
〈e−i S̃IO〉S̃R

〈e−i S̃I 〉S̃R

, (8)

where S̃[x] = S[z(x)] − log det J is the effective action
whose real part determines the probability distribution

(i.e. P (xi) ∝ e−S̃R[x]). We use a standard Metropolis
algorithm to generate samples. In this method, we make
all the updates in RN and the flow evolution guarantees
that the points zi lie on the manifold Γ, as desired. In
the last step of (8) we reweighed the phase which involves
both the contribution from SI [z(x)] and Im(log detJ). As
we discussed earlier, the variation of SI [z(x)] on regions
which dominate the integral is mild. We have also found
that Im(log detJ) fluctuates very weakly on these regions
as well. Therefore reweighting the phase does not produce
large errors. In a nutshell, the contraction algorithm
is a standard Metropolis algorithm in the variables xi
using the effective action S̃R[x] where the phase e−iS̃I is
reweighted during the computation of the observable.

Some care has to be taken regarding the proposals. Due
to the nonlinear nature of the flow equation, the image
of the directions on Γ along which the variation of the
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FIG. 2. Retarded correlators 〈ẋ(t)ẋ(t′)〉 and 〈x(t)x(t′)〉. The
dotted and solid lines represent the exact results obtained by
diagonalizing the Hamiltonian.

action is mild is typically very distorted and anisotropic
in RN , where the updates are made. As a result, there
are some steep directions in RN along which S̃[x] changes
very rapidly and some flat directions where it changes
very slowly. We choose the proposals such that the size
of the random step is larger along the flat directions and
smaller along the steep directions for better efficiency.
In order to do so, we use the a quadratic estimate for
the effective action S̃R[x] ≈ 1

2x
TMx where M is a real

matrix [17]. In the quadratic approximation, solution to
the flow equation (5) hence the matrix M can be found
analytically. Any vector xi ∈ RN can be decomposed in
terms of the eigenvectors of M as

xi =

N∑
α=1

c(α)ρ
(α)
i where Mρ(α) = λ(α)ρ(α) . (9)

The eigenvalues λa provide an estimate for the variation
of the action on Γ in the direction ρ(α). The proposals
are then given by

c
(α)
proposed = c

(α)
old +

δ√
λ(α)

(10)

where δ is a random number satisfying P (δ) = P (−δ) to
ensure detailed balance. At each update, we randomly
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select a direction α and propose a step in that direction.
The proposed configuration is then accepted with proba-
bility min{1, exp(−S̃[xproposed] + S̃[xold])}. To ensure the
accuracy of the flow, we use an adaptive step size, high
order Runge-Kutta integrator [18].

RESULTS

We computed retarded correlation functions 〈ẋ(t)ẋ(t′)〉
and 〈x(t)x(t′)〉 for the quantum anharmonic oscillator

with V (x) = ω2

2 x
2 + λ

4!x
4. The former characterizes the

linear response of the system to an external force. Of
course, since there is a single degree of freedom there
is no actual dissipation in our model, but nevertheless
this correlator can be thought of a quantum mechanical
analogue of conductivity. Our parameters are as follows:
lattice spacing a = 0.2, n1 = 12, n2 = 2 (i.e. tmax = 2.2,
β = 0.8), ω = 1, λ = 24 and Tflow = 0.2. The choice of
the coupling constant λ is such that the anharmonic term
is of the same order as the quadratic mass term and the
theory is in the strongly coupled regime. Our results for
the real and imaginary parts of the retarded correlators
are plotted in Fig. 2.

The problem we studied has been studied via complex
Langevin method in the past [2–4]. However one vital
shortcoming of the complex Langevin approach is that it
does not converge to the correct answer for operators sep-
arated by real time intervals tmax > β. For the purposes
of computing transport coefficients, which are expressed
as small frequency limits of the Fourier transforms of the
time dependent correlation functions, it is important to
be able to accurately compute correlators with tmax & β.
This is because one expects, for strongly coupled theories,
the damping time to be proportional to β and depending
on the proportionality constant the main support to the
Fourier transform can extend to t & β. For theories with
intermediate coupling where the damping time might be
greater, the problem gets worse. Remarkably, our ap-
proach does not suffer from this problem. In fact, in the
computations presented in Fig. 2 we were able to go as
high as tmax ≈ 3β.

The convergence to the right result is encouraging and,
to our knowledge, unique to our method. There is, how-
ever, room for improvement. The convergence is rather
slow; the results above required 3× 107 Metropolis steps.
Going to high values of tmax requires more computational
effort. The dependence of the cost on the parameters,
such as Tflow or the number of steps, is unclear. Neverthe-
less, improving the proposals would have a big impact on
the efficiency. As discussed earlier, at the proposal stage
we estimate the behavior of the effective action as function
of xi via a quadratic approximation. This approximation
gets worse for larger values of Tflow as larger flow amplifies
the anisotropies in the proposal space so that the flatness
and steepness of the different directions become more pro-

-π 0 π

FIG. 3. Histogram of SI (mod 2π) for the Tflow = 0 calculation
corresponding to an integration over RN (in red) and the
Tflow = 0.2 calculation corresponding to an integration over Γ
(in blue). It is clear that the modest flow Tflow = 0.2 reduces
the sign problem significantly.

nounced. For our model with the particular parameters
we had, a value of Tflow = 0.2 was enough to overcome the
sign problem (see Fig. 3), but for problems that require
higher flow, as it will inevitably be the case in systems
with more degrees of freedom, the proposals have to be
optimized further. Secondly, the most costly part of our
algorithm is the computation of the Jacobian J that is
performed at every update. Using an estimator which is
cheaper and reweighting the difference at every measure-
ment would significantly reduce the computational cost.
Several such estimators have been found in the context
of Lefschetz thimbles [19] and proved to be very useful,
but finding one that is applicable to our method that is
flowing from RN is still an open problem. These issues
are left for future work.

DISCUSSION AND CONCLUSIONS

We have presented a new method to stochastically
compute real time correlators of the kind required for the
calculation of transport coefficients. We pointed out that
the straightforward separation of phase leads to a sign
problem that is, in a sense, infinitely bad. The method,
obviously inspired by the “Lefshetz thimble” approach
[5, 20–29] [30], is based on a deformation of the region of
integration of the path integral into complex space but,
contrary to the Lefshetz thimble approach it does not
require a priori knowledge of the position of the critical
points, their thimbles and the contribution of each one
to the original integral. We test it with success, on a
simple quantum mechanical model where the complex
Langevin method fails to converge. Even though there is
no theoretical obstruction to use the method in problems
with larger degrees of freedom, such as field theory, at
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its current stage, the slow convergence of the method
makes it expensive to do so. Future work should focus
on improving the convergence rate by developing more
efficient Metropolis proposals and by finding of a good
estimator of the Jacobian.
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