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We show that there exists a special compactification of QCD on R3×S1 in which the theory has a
domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic
derivation of the chiral lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation
m2
πf

2
π = −mq〈q̄q〉. Abelian duality, monopole operators, and flavor-twisted boundary conditions

play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero
modes among monopole-instantons. Chiral symmetry breaking is induced by monopole-instanton
operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless “dual
photons”. We also give a microscopic picture of the “constituent quark” masses. Our results are
consistent with expectations from chiral perturbation theory at large S1, and yield strong sup-
port for adiabatic continuity between the small-S1 and large-S1 regimes. We also find concrete
microscopic connections between N = 1 and N = 2 supersymmetric gauge theory dynamics and
non-supersymmetric QCD dynamics.

Introduction. The importance of spontaneous chi-
ral symmetry breaking (χSB) in QCD for our under-
standing of nature is hard to overstate. For example,
χSB gives the main contribution to the rest masses of
the light mesons and baryons, and strongly constrains
their interactions. However, the microscopic mechanism
of χSB is still mysterious. The basic problem is that in
the situations known to date in QCD, continuous χSB
at zero matter density only happens at strong coupling
[1]. So, while there are many phenomenological models
of χSB, such as Nambu-Jona-Lasinio models [2], trun-
cated Schwinger-Dyson models [3], and instanton liquid
models [4, 5], χSB happens outside of the regime where
they are under systematic theoretical control.

Here we present a new mechanism of χSB, in a class
of 4D non-Abelian gauge theories which is smoothly con-
nected to standard 4D QCD with Nc = 3 and Nf = 3.
Our mechanism operates in a weakly-coupled regime
which is under systematic theoretical control thanks to
the technique of adiabatic continuity [6–20]. We are thus
able to give a controlled microscopic derivation of the chi-
ral Lagrangian of the Nambu-Goldstone bosons (NGBs).
Another historical mystery is the reason for the phe-
nomenological successes of the naive quark model, built
from “constituent quarks” with masses of the same scale
as the gauge-sector mass gap. We show that constituent
quark masses arise naturally from monopole-instantons.

The setting. We consider SU(Nc > 2) gauge the-
ory with a strong scale Λ coupled to Nf ≤ Nc flavors
of fundamental Dirac fermions ψi, i = 1, · · · , Nf with a
common mass mq � Λ, as well as one heavy adjoint
Dirac fermion λ with mass mλ � Λ. On R1,3 the heavy
adjoint fermion is a spectator field. On R1,2 × S1, it
plays a role in center stabilization, but otherwise it is
still decoupled from the dynamics of light states. So for
light states we deal with standard QCD if we set Nc = 3
and Nf = 2, 3. The idea of adiabatic continuity is to
find a way to put an asymptotically-free gauge theory on

R1,2×S1 in such a way that its dependence on the spatial
circle size L is smooth. If this condition is met, then one
can get insight about the behavior of the theory for large
L, where it is strongly coupled, by studying it for small
L, where it is weakly coupled. Satisfying the adiabaticity
condition has been especially challenging[9, 21] in theo-
ries with continuous chiral symmetries, but in this paper
we present a method to ensure it, allowing us to address
chiral symmetry breaking.
Large L expectations. If mq = 0, the quantum

theory has the global symmetry

G = SU(Nf )L × SU(Nf )R × U(1)Q . (1)

Here, we already factored out the anomalous U(1)A
which reduces to Z2Nf due to instanton effects. It is be-
lieved that G breaks spontaneously to SU(Nf )V ×U(1)Q,
and the low-energy dynamics of the resulting NGBs are
described by chiral perturbation theory

LχPT =
f2
π

4
tr |∂µΣ|2 − c tr (M†qΣ +MqΣ

†) + · · · , (2)

where Σ = eiΠ/fπ and Mq = mq1Nf is the quark

mass spurion field, transforming as Σ → LΣR†,Mq →
LMqR

† under chiral rotations. Equation (2) implies
that the NGB masses obey the famous Gell-Mann-Oakes-
Renner [22] (GMOR) relation f2

πm
2
π = −mq〈ψ̄ψ〉, where

〈ψ̄ψ〉 = −2c.
If generic imaginary chemical potentials µ are turned

on for the Cartan subgroup U(1)
Nf−1
L × U(1)

Nf−1
R of G

then Nf − 1 NGBs remain gapless, while the the rest
pick up mass gaps ∼ |µ| in the chiral limit mq = 0.
So, for instance, for Nf = 2, turning on an isospin
chemical potential µI corresponds to shifting ∂µΣ →
∂µΣ + i[µI

τ3
2 δµ,0,Σ], see e.g. [23]. With an imaginary

µI the π± fields get positive mass gaps ∼ |µI |, while the
π0 remains gapless.
Vacuum structure at small L. To compactify the

theory on S1 we must choose boundary conditions for the
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fields. As usual, we take the gluons AM ,M = 1, . . . , 4
to be periodic. For the fermions, there are many more
choices: one can demand periodicity up to global sym-
metry transformations, which is a topic which has been
explored both in lattice QCD and continuum QFT dis-
cussions, see e.g. [24–39]. Twisted boundary conditions
for fermions are equivalent to turning on expectation val-
ues for holonomies ΩF = Pei

∫
S1 A4 of background flavor

gauge fields AM valued in the Lie algebra of Eq. (1), and
can also be interpreted as turning on imaginary flavor
chemical potentials µ ∼ 1/L [26].

In a gapped theory, one expects the effects of twisted
boundary conditions to become negligible when LΛ� 1,
but they can become important when LΛ � 1. In par-
ticular, it turns out that the circle-size dependence with
some special choices of twists is smoother than the one
associated to taking standard periodic or anti-periodic
boundary conditions. The standard boundary conditions
correspond to a trivial flavor background holonomy, and
with this choice the theory has N2

f − 1 NGBs at large L,
and no NGBs at small L, indicating the existence of a
chiral phase transition at some intermediate value of L.
But as we will see in this paper, one can choose a certain
non-trivial background flavor holonomy that eliminates
this phase transition. The way this works is that with
the non-trivial holonomy the gaps of the lightest charged
pseudoscalar states smoothly increase as the circle size
decreases, but the lightest neutral pseudoscalar states re-
main gapless both at large L and small L. Indeed these
neutral pseudoscalars are precisely the neutral NGBs of
spontaneous χSB. The large L story was already given
above, and we focus on the small L behavior in what
follows.

Once LΛ� 1 the 4D gauge coupling at the scale 1/L
becomes small, and the theory comes under semiclas-
sical control, provided that the long-distance dynamics
becomes Abelian. Whether this happens depends on the
expectation value for the gauge holonomy in the com-
pact direction Ω = Pei

∫
S1 A4 . At large L, we expect the

“center-symmetric” result 〈tr Ωn〉 ' 0, n = 1, · · · , Nc − 1
due to strong eigenvalue fluctuations (despite the lack of
an exact center symmetry unless Nf = 0 or Nf = Nc,
see [32, 38]). On the other hand, at small L the eigen-
value fluctuations become small, and 〈tr Ωn〉 is deter-
mined by the minimum of the Wilsonian effective po-
tential. The role of the massive λ field is to produce
a ZNc center-symmetry-stabilizing contribution to the
potential[8, 40–44], which can also be achieved by double-
trace deformations [8]. The minimum of the potential is
then attained with a ZNc -center-symmetric configuration
Ω ∼ diag(1, ω, · · · , ωNc−1), where ω = e2πi/Nc .

Unlike the VEV of Ω, which is determined dynami-
cally, the flavor holonomy is an external parameter and
can be chosen at will. As emphasized above and in [45–
50], some choices are better than others in the context of
adiabatic continuity, and can lead to a smoother passage
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FIG. 1. Eigenvalue distributions for the gauge holonomy Ω
(blue dots) Nc = 4 and flavor holonomy ΩF (red dots) with
Nf = 4 (on the left) and Nf = 3 (on the right). The U(1)Q
holonomy ΩQ = eiθ rotates ΩF and Ω eigenvalues relative to
each other. The green arrows represent the four monopole-
instanton events, which are labeled by the affine roots ~αi.
Each time an arrow “passes” a flavor holonomy eigenvalue, the
associated monopole-instanton operator picks up two fermion
zero modes. So in the left Nf = 4 figure, all monopole instan-
tons have two zero modes, while in the right Nf = 3 figure
~α1 has no zero modes while ~α2,3,4 each have two zero modes.

from large L to small L. At the two extremes, we can
choose a trivial flavor-holonomy ΩF = 1Nf , or a non-

trivial flavor-holonomy ΩF ∼ diag(1, ωF , · · · , ω
Nf−1
F ),

where ωF = e2πi/Nf , which preserves a ZNf flavor-center
symmetry. Center-symmetric gauge and flavor holonomy
configurations are illustrated in Fig. 1. We will see that
choosing ΩF to be ZNf symmetric has rather dramatic
implications.

At small L, A4 acts as an compact adjoint Higgs field.
At long distances the center-symmetric VEV for Ω leads
to an Abelianization of the dynamics:

SU(Nc)→ U(1)(Nc−1) . (3)

This is similar to what happens in the 3D Polyakov model
[51] and Seiberg-Witten analysis of N = 1 and N = 2
super-Yang-Mills (SYM) theories [52], but the fact that
A4 is a compact variable leads to important differences
in the physics. The Abelianization happens at the scale
of the lightest W -boson mass mW = 2π

LNc
.

Perturbative small L physics. In perturbation the-
ory the Abelianized small L regime can be described by a
3D effective field theory. The lightest fields are the Car-
tan gluons Aiµ, where i = 1, . . . , Nc − 1 and from now on

µ = 1, 2, 3. In fact Aiµ are massless to all orders in pertur-
bation theory. This is easiest to see by using an Abelian
duality transformation F iµν = g2/(2πL)εµνα∂

ασi relating

the Cartan gluons to 3D scalars σi, which we call “dual
photons”. If we write σi = ~αi ·~σ, where ~αi are the simple
roots of the algebra su(Nc) and ~· denotes an Nc -vector,
then the dual photons enjoy an emergent topological shift
symmetry

[U(1)J ]Nc−1 : ~σ → ~σ + ~ε, ~Jµ = ∂µ~σ (4)
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in perturbation theory. The Noether currents ~Jµ can

be identified with the (Euclidean) magnetic field ~Bµ =

εµνα ~F
να using the Abelian duality relation, and current

conservation is just the statement of the absence of mag-
netic monopoles ∂µ ~Jµ = ∂µ ~Bµ = 0. Therefore, to all
orders in perturbation theory, the dual photons must re-
main gapless. Their action looks like

Sσ =

∫
d3x

g2

8π2L
(∂µ~σ)2. (5)

Quarks are charged under the Cartan subgroup of
SU(Nc), so one might be concerned that the resulting
3D QED theory, with gauge coupling g2

3 = g2
YM(mW )/L,

might flow to strong coupling in the far infrared if mq =
0. However, this does not happen for generic values of
the U(1)Q holonomy ΩQ = eiθ. The long-distance per-
turbative action for the quarks is

Sψ = L

∫
d3x

{
ψ̄L
[
γµDµ + γ4(A4 +A4 + θ/L)

]
ψL (6)

+mqψ̄LψR + L↔ R} .

So even if mq = 0, the center-symmetric color and flavor
holonomies give ψn,a a chirally-invariant gap 2π

L ( n
Nc

+
a
Nf

+ θ). So long as θ & g2
3L = g2

YM, within perturbation

theory all of the quarks decouple from the Cartan gluons
at long distances, and there is no flow to strong coupling.

Monopole-instantons. Due to Eq. (3) our theory
has Nc types of monopole-instantons [8, 53–55]. In the
center-symmetric background, they all have identical Eu-

clidean actions S0 = SI
Nc

= 8π2

g2Nc
, where SI = 8π2

g2 is the
4d instanton action. In this setting the 4d instanton is
a composite configuration built from the Nc monopole-
instantons. These solutions are associated with the affine
root system of su(Nc) Lie algebra: Nc − 1 correspond to
the simple roots, while the remaining one is associated
with the affine root, and is due to the compact nature of
the adjoint Higgs field [53, 54].

To understand the contributions of these finite-
action field configurations, we note that monopole-
instantons carry two types of topological quantum num-
bers, magnetic and topological charge (Qm, QT ) =(
g

4π

∫
S2
F · dS, 1

16π2

∫
trFµν F̃

µν
)

, given by (Qm, QT ) =

± (αi, 1/Nc) for monopoles and anti-monopoles.
These field configurations couple to the dual photons,

and, if Nf = 0 — that is, in pure Yang-Mills theory
deformed by a heavy adjoint fermion — the associated
amplitudes take the form

Mi = e−S0ei~αi·~σ, no fermions . (7)

The usual 4d instanton amplitude is

I4d ∼
Nc∏
i=1

Mi ∼ e
− 8π2

g2 , no fermions . (8)

The 4d instanton has vanishing magnetic charge, and
does not couple to dual photons. Consequently, it does
not play any important role in the long-distance dynam-
ics, which is determined by the monopole-instantons.
The fact that the monopole-instantons carry magnetic
charge means that, for Nf = 0, their proliferation in
the vacuum leads to an explicit non-perturbative break-
ing of the topological [U(1)J ]Nc−1 shift symmetry of the

σi fields, ∂µ ~Jµ = ∂µ ~Bµ = ~ρm, where ~ρm is the (non-
perturbative) magnetic charge density for the monopole-
instantons. The monopoles and anti-monopoles generate
a potential V (~σ) ∼ −m3

W e
−S0

∑
i cos(~αi · ~σ), and fluc-

tuations around its minimum ~σ = 0 have mass m2
σ ∼

m2
W e
−S0 , as discussed in Ref. [8], so that the deformed

YM theory develops a non-perturbative mass gap. The
long-distance Nf = 0 theory exhibits both confinement
of electric charge with finite string tension and a non-
perturbative mass gap for all gauge fluctuations.
Fermion zero modes. When mq = 0, the chiral

anomaly implies the presence of 2Nf fermion zero modes
in the instanton background. This modifies the instanton
amplitude from Eq. (8) to [56]

I4d ∼ e
− 8π2

g2 deta,b
[
ψ̄L,aψR,b

]
(9)

which is invariant under Z2Nf but not U(1)A. However,
the ’t Hooft vertex in Eq. (9) is invariant under G from
Eq. (1) because these symmetries are not anomalous,
and must be preserved in all effective interaction ver-
tices. The non-perturbative generation of explicit U(1)A
breaking interactions in Eq. (9) and Eq. (10) below im-
ply that no massless η’ mode should be expected, see [57]
and also [58] for a discussion of the U(1)A problem in a
setting close to our current context.

At small S1, the 4d instanton splits into monopole-
instantons, and if ΩF ∼ 1Nf and ψj(x4 +L) = eiθψj(x4),
the Nye-Singer index theorem implies that all the fermion
zero modes localize on a single monopole [59, 60], say,
M1. Then the monopole amplitudes are given by

M1 = e−S0ei~α1·~σ deta,b
[
ψ̄L,aψR,b

]
Mi = e−S0ei~αi·~σ, i = 2, . . . Nc (10)

All Mi are invariant under G from Eq. (1), and
∏
iMi

is equivalent to Eq. (9). With the choice ΩF ∼ 1Nf
there is no χSB at weak coupling. The reason is that
all 2Nf fermi zero modes are localized at one monopole-
instanton, and the semi-classical weight e−S0 is not large
enough to break chiral symmetry. In this case, there must
be a chiral phase transition between small L and large L
at the scale L = Λ−1/Nc, as explained in [21].

As the U(1)Q holonomy is dialed, the 2Nf zero modes
jump collectively from one monopole instanton to the
next at discrete values of θ, e.g, at θ = 2πk

Nc
, k ∈ Z for

Nf = Nc [61–63]. In other words, the index is only a
piece-wise constant function, and exhibits jumps with re-
spect to θ. This is interpreted as wall-crossing in [64].
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FIG. 2. The distribution of fundamental fermion zero modes
for the monopole-instantons with a trivial flavor holonomy
(top row) and a ZNf -symmetric flavor holonomy (bottom row)
for Nf = Nc. The latter distribution is identical to N = 1
SYM on R3 × S1 in which monopole-instantons saturate the
chiral condensate.

Fractional jumping. The main new idea of this work
is a refinement of collective jumping. If we dial the ΩF
holonomy from the trivial configuration ΩF = 1Nf to-
ward a configuration that respects the flavor center sym-
metry ZNf , this shifts the frequency quantization of dif-
ferent flavor components, and leads to fractional jumping
(in units of two) of the 2Nf fermionic zero modes onto
the Nc monopole-instantons as evenly as possible. A sim-
ilar phenomenon occurs in the 2D Schwinger model[65].
This fractional jumping phenomenon, as well as the col-
lective jumping, is illustrated in Fig. 1. At long dis-
tances the twisted boundary conditions result in an ex-
plicit breaking of the global symmetry G down to its
maximal Abelian subgroup

Gmax−ab = [U(1)V × U(1)A]Nf−1 × U(1)Q . (11)

With the twist, Nf of the monopole operators carry two
fermi zero modes each, while the otherNc−Nf monopole-
instantons have no fermion zero modes. The monopole
amplitudes are, schematically,

Mi = e−S0ei~αi·~σ(ψ̄L,iψR,i), i = 1, . . . Nf , (12)

Mk = e−S0ei~αk·~σ, k = Nf + 1, . . . Nc . (13)

and are illustrated in Fig. 2. The individual zero
mode vertices (ψ̄L,iψR,i) transform non-trivially under
[U(1)A]Nf−1, and naively this could lead one to the puz-
zling conclusion that there is an anomaly for the corre-
sponding U(1)A factors. But this is impossible, because
Gmax−ab is a subgroup of a non-abelian chiral symmetry,
which is non-anomalous.

The resolution of this puzzle comes from an axial-
topological symmetry intertwining effect, also seen in

Ref. [12]. The [U(1)A]Nf−1 symmetry intertwines with
[U(1)J ]Nf−1 subgroup of Eq. (4), such that the symme-
try phase of the fermion bilinear is cancelled exactly by
a shift of the dual photon field, ~σ:

(ψ̄L,kψR,k) → eiεk(ψ̄L,kψR,k),

ei~αk·~σ → e−iεkei~αk·~σ.
(14)

In this way, the monopole-instanton amplitude is invari-
ant under the expected symmetries.

Since the Nf parameters εk must satisfy
∑Nf
k=1 εk = 0

we can write εk = αk · ε where αk are the simple roots
of su(Nf ) and bold symbols denote Nf -vectors. Writing
~σ = (σ, σ̃), where σ̃ is an Nc − Nf vector, we find that
σ enjoys an unbroken shift symmetry,

σ → σ + ε , (15)

while the shift symmetry of σ̃ is explicitly broken.
Chiral symmetry breaking. Now consider the fluc-

tuations of σ around any point on its vacuum manifold
U(1)Nf−1, along with the fluctuations of σ̃ around the
bottom of its potential at σ̃ = 0.

The choice of a point on the vacuum manifold sponta-
neously breaks the [U(1)A]Nf−1. Then Eq. (15) implies
that Nf − 1 dual photons enjoy a shift symmetry and
remain gapless non-perturbatively. A more microscopic
way to see is to note that all magnetically-charged topo-
logical molecules which couple to σ have uncompensated
fermion zero modes, so here there is no analog of the
magnetic bion mechanism of mass generation from ad-
joint QCD[7]. Thus the gapless dual photons become the
“pions” of χSB, similarly to the phenomena seen in e.g.
Ref. [66]. The remaining Nc − Nf dual photons σ̃ pick
up masses mσ ∼ mW e

−S0/2, as in pure YM theory.
It is also worth noting that in N = 2 SYM theory com-

pactified on R3×S1 [67], the gaplessness of the dual pho-
ton is due to an identical mechanism of axial-topological
symmetry intertwining. In Ref. [67], however, supersym-
metry implies that an entire N = 2 multiplet remains
gapless, and there is a quantum moduli space associated
to the elementary scalar fields as well. In our context,
only the dual photons are protected, and there are no
elementary scalars. Nevertheless, it is intriguing to see
such close parallels between a theory with extended su-
persymmetry and QCD.

The basic physical phenomenon is that gapless dual
photons are transmuted into the NGBs of the sponta-
neously broken Abelian chiral symmetry. This is the chi-
ral symmetry group that remains exact with our choice
of twisted boundary conditions. Indeed, if we define

Π′ =
∑Nf
a=1 πaTa, where Ta are the Cartan generators

of su(Nf ), πa = g/(2πL)σa, and Σ′ = eiΠ
′/fπ , then the

action for σ can be written as

Sσ = L

∫
d3x

[
f2
π

4
tr ∂µΣ′∂µΣ′† − c tr (M†qΣ′ + h.c.)

]
, (16)
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with the derivation of the c term given below. This
precisely matches the dimensional reduction of Eq. (2)
to 3D, with Σ′ interpreted as the restriction of the
SU(Nf )-valued chiral field Σ to its maximal torus, which
parametrizes the exactly massless NGBs. In the LΛ� 1
regime the value of fπ can be calculated by gauging
Gmax−ab, giving

f2
π =

(
g

πL
√

6

)2

=
Nc λm

2
W

24π4
, (17)

where λ = g2Nc. This implies that starting from the
weak-coupling, small-L, side of compactified QCD we
have been able to derive the chiral Lagrangian expected
from the strong coupling, large-L side. This supports the
expectation that the compactification is indeed adiabatic,
with no phase transitions as a function of L.
Constituent quark masses and the chiral con-

densate. We now work out the effect of turning on light
quark masses, as well as the origin of the “constituent
quark” masses. First, consider turning on a small “cur-
rent” quark mass mq by adding Lm = mq(ψ̄LψR + h.c.)
to the 4D Lagrangian. The contribution of L to the 3D
effective action can be obtained by saturating the integral
over the fermion zero modes with a single mass insertion,

Lm,eff = m2
Wmqe

−S0eiσk·σ + h.c. , (18)

which leads to the c term in Eq. (16). The VEV of
the monopole operator determines the vacuum energy
density E = −c tr [Mq + h.c.] and the chiral conden-
sate. We get 〈ψ̄ψ〉 = −2m3

W e
−S0 . The GMOR relation

f2
πm

2
π = −mq〈ψ̄ψ〉 is of course also reproduced.

We note that if Nf = Nc there are some remarkable re-
lations toN = 1 SYM. In both theories, allNc monopole-
instantons acquire 2 fermion zero modes, the leading
order beta function is b = 3Nc (on scales below mλ),
and the chiral condensate is saturated by the monopole-
instantons. These observations may be the microscopic
explanation of why the chiral condensate in N = 1 SYM
is so close to the one in real QCD [68].

Next, consider the notion of a constituent
quark mass. For vanishing mq the long-distance
fermion effective Lagrangian includes the term∑Nf
k=1(mW e

−S0eiαk·σψ̄L,kψR,k + h.c.). So once the
magnetic flux part eiαk·σ of the monopole-instanton
operator acquires a VEV, the lightest quark modes
pick up a non-perturbative chiral-symmetry breaking
“constituent quark” mass mconstituent ∼ mW e

−S0 .
Outlook. We have described a new non-perturbative

mechanism for χSB in 4D QCD which operates at weak
coupling, and hence is under full theoretical control. The
calculation is based on adiabatic compactification, and a
key ingredient is the use of a ZNf -symmetric flavor holon-
omy. Spontaneous chiral symmetry breaking arises from
monopole-instanton vertices by color-flavor transmuta-
tion, and the NG pions originate from massless dual pho-
tons. This mechanism is somewhat reminiscent of chiral

symmetry breaking via color-flavor locking in high den-
sity QCD. We also emphasize that our mechanism oper-
ates within the regime where monopole-instanton gas is
dilute, which is a major difference from phenomenologi-
cal instanton liquid models. We provided a microscopic
derivation of the chiral Lagrangian. The structure of the
Lagrangian supports the idea that the small S1 regime
and the R4 limit are continuously connected.

Our results open a new playground for the exploration
of 4D non-supersymmetric gauge theory dynamics in a
fully calculable setting with confinement and χSB. Some
of the issues which are ripe for exploration include gen-
eralizations to Nf > Nc, to other gauge groups, χSB
in chiral gauge theories, explorations of the spectrum of
non-Goldstone excitations, and many more.
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