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Community detection, the division of a network into dense subnetworks with only sparse con-
nections between them, has been a topic of vigorous study in recent years. However, while there
exist a range of effective methods for dividing a network into a specified number of communities,
it is an open question how to determine exactly how many communities one should use. Here we
describe a mathematically principled approach for finding the number of communities in a network
by maximizing the integrated likelihood of the observed network structure under an appropriate
generative model. We demonstrate the approach on a range of benchmark networks, both real and
computer generated.

The large-scale structure of empirically observed net-
works, such as social, biological, and technological net-
works, is often complex and difficult to comprehend [1].
Community detection, the division of the nodes of a
network into densely connected groups with only sparse
between-group connections, is one of the most effective
tools at our disposal for reducing this complexity to a
level where network topology can be more easily under-
stood and interpreted. The development of algorithmic
methods for community detection has been the subject
of a large volume of recent research [2–4], as a result of
which we now have a number of efficient and sensitive de-
tection techniques that are able to find meaningful com-
munities in real-world settings [4–11].
A fundamental limitation of most of these methods,

however, is that they only divide networks into a fixed
number of groups, so that one must know in advance how
many groups one is looking for. Normally one does not
have this information, which significantly diminishes the
usefulness of community detection as an analytic tool. In
this paper, we present a rigorous, first-principles solution
to this problem in the form of an algorithm that, when
applied to a given network, returns the number of com-
munities the network contains. The algorithm makes use
of widely accepted methods of statistical inference cou-
pled with a numerical approach that scales efficiently to
large networks.
There have been a number of previous approaches pro-

posed for this problem, among which perhaps the best
known is the method of modularity maximization [5, 12],
which is a method both for choosing the number of com-
munities and for performing the community division it-
self. This method is employed in, for example, the widely
used Louvain algorithm [8], but it suffers from being only
heuristically motivated and there are instances where it
is known to give incorrect results [13, 14]. More rig-
orous approaches include the maximization of various
approximations to integrated data likelihoods for gen-
erative network models, including Laplace-style approxi-
mations [15], variants of the Bayesian information crite-
rion [16, 17], and variational approximations [18]. Per-

haps most similar to our work is that of [19] which uses
an exact integral of the likelihood for a stochastic block
model, as we do, but makes a number of other approxi-
mations and also employs a non-degree-corrected model,
making it unsuitable for applications to most real-world
network data. Also of note is the minimum description
length method of [20], which at first sight is based on dif-
ferent ideas but can be shown to be equivalent to maxi-
mizing an integrated likelihood, though it uses a different
model and different numerical methods [21].
Our approach, like much of the recent work in this area,

is based on methods of statistical inference, in which one
defines a model of a network with community structure,
then fits that model to observed network data. The pa-
rameters of the fit tell us about the community struc-
ture in much the same way that the fit of a straight line
through a set of data points can tell us about their slope.
The model most commonly employed in this context is
the stochastic block model [11, 22, 23]. In this model one
specifies the number of nodes n in the network along with
the number k of communities or groups, then one assigns
each node in turn to one of the groups at random, with
probability γr of assignment to community r (where r

runs from 1 to k). Note that we must have
∑k

r=1 γr = 1
for consistency. Once all nodes have been assigned to
a group, one places undirected edges independently at
random between pairs of distinct nodes with probabili-
ties ωrs, where r and s are the groups to which the nodes
belong. If the diagonal parameters ωrr are greater than
the off-diagonal ones, this produces a network with tra-
ditional community structure.
In practice, this model is often studied in a slightly

different formulation in which one places not just a sin-
gle edge between any pair of nodes i, j but a Poisson
distributed number with mean ωrs, or half that num-
ber when i = j [11]. In this variant of the model the
generated network may contain both multiedges and self-
edges, which is in a sense unrealistic—most real networks
contain neither. But in typical situations the edge prob-
abilities are so small that both multiedges and self-edges
occur with very low frequency, and the model is virtually
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identical to the first (Bernoulli) formulation given above.
At the same time the Poisson formulation is significantly
easier to treat mathematically. In this paper we use the
Poisson version.
This definition of the model specifies its behavior in

the “forward” direction, for the generation of random
artificial networks, but our interest here is in its use in the
reverse direction for inference, where we hypothesize that
an observed network was generated using the model and
then estimate by looking at the network which parameter
values must have been used in the generation [23, 24].
Let the observed network be represented by its adja-

cency matrix A, with elements aij = 1 if distinct nodes
i and j are connected by an edge (or, by convention,
aii = 2 for self-edges) and aij = 0 if nodes are not con-
nected, and let the assignment of nodes to groups be
represented by a vector g with elements gi equal to the
group to which node i is assigned. Then the probability,
or likelihood, that the model generates a particular net-
work A and group assignment g, given the parameters γ,
ω, and k, is

P (A, g|γ, ω, k) = P (g|γ, k)P (A|g, ω)

=
∏

i

γgi
∏

i

(

1
2
ωgigi

)aii/2
e−ωgigi

/2
∏

i<j

ωaij

gigje
−ωgigj

=
∏

r

γnr

r

∏

r

ωmrr

rr e−n2

rωrr/2
∏

r<s

ωmrs

rs e−nrnsωrs , (1)

where nr =
∑

i δgi,r, is the number of nodes in group r
(with δij being the Kronecker delta), and mrs is the num-
ber of edges running between groups r and s, given by
mrs =

∑

ij aijδgi,rδgj ,s for r 6= s or half that number
when r = s. (We have neglected an overall multiplicative
constant in (1), since it cancels out of later calculations
anyway.) Note that there is no requirement that all k
groups be non-empty: k represents the number of groups
nodes can potentially occupy, not the number they actu-
ally do. Indeed it is crucial to allow for the possibility of
empty groups for our calculations to be correct.
We can use Eq. (1) to derive the probability P (k, g|A)

that, given an observed network A, the block model
from which it was generated had k groups and group
assignment g, by an exact integral over the parame-
ters [19, 20, 25]. We assume maximum-entropy (least
informative) prior probability distributions on the un-
known quantities k, γ, and ω, which implies for instance
that the prior on k is uniform between the minimum and
maximum allowed values of k = 1 and k = n, mean-
ing that P (k) = 1/n, independent of k. The prior on
the group assignment probabilities γ is also uniform, but
because of the constraint

∑

r γr = 1 it occupies a more
complicated space, a regular simplex with k vertices and
volume 1/(k − 1)!, so that the prior probability density
is P (γ|k) = (k − 1)!. For ω we set the scale of the prior
(and hence the density of the network) by requiring that
the mean of the edge probability ωrs be equal to the ob-

served average edge probability in the network as a whole
p = 2m/n2, where m is the observed number of edges in
the network. Then the maximum-entropy prior is an ex-
ponential P (ω) = p−1e−ω/p. (Approaches of this kind,
where the prior is chosen to match features of the input
data, are known as “empirical Bayes” techniques and typ-
ically give consistent results in the large-n limit [26, 27].)
Given the prior probabilities, we now have

P (k, g|A) =
P (k)P (g|k)P (A|g)

P (A)
, (2)

where

P (g|k) =

∫

P (g|γ, k)P (γ|k) dγ =
(k − 1)!

(n+ k − 1)!

k
∏

r=1

nr!

(3)

P (A|g) =

∫

P (A|g, ω)P (ω) dω

=
∏

r

mrr!

(1
2
pn2

r + 1)mrr+1

∏

r<s

mrs!

(pnrns + 1)mrs+1
. (4)

The probability P (A) in the denominator of (2) is un-
known but cancels out of later calculations (and we have
again neglected an overall multiplicative constant in (4),
for the same reason).
We can regard the values k, g as defining a “state” of a

statistical mechanical system with probability P (k, g|A).
We will sample states of this system in proportion to
this probability using Markov chain Monte Carlo impor-
tance sampling [28, 29]. Then an estimate of the proba-
bility P (k|A) of having k communities given the observed
network A is given simply by the histogram of values of k
over the Monte Carlo sample, and the most likely value
of k is the one for which P (k|A) is greatest (although
in many cases the complete distribution over k can offer
more insight than just its largest value alone).
This defines the method for estimating the number of

groups k. It remains only to choose the Monte Carlo
procedure. In order to sample over both k and g we use
two different Monte Carlo steps.
To sample over group assignments g for given k, we

perform steps consisting of the movement of a single node
from one group to another. One could perform such steps
using the classic Metropolis–Hastings rejection scheme,
but we have found better efficiency (especially for larger
values of k) with a so-called heat-bath algorithm [28],
in which a randomly chosen node i is assigned a new
group r from among the k possibilities with probabilities
P (gi = r|k,A) = P (k, gi = r|A)/

∑

s P (k, gi = s|A), all
other gi being held constant.
To sample values of k with g held constant we per-

form steps in which the value of k is either increased
or decreased by 1. For group assignments g having at
most k non-empty groups, the probabilities P (k, g|A) and
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P (k + 1, g|A) are related by

P (k + 1, g|A)

P (k, g|A)
=

P (k + 1)P (g|k + 1)P (A|g)/P (A)

P (k)P (g|k)P (A|g)/P (A)

=
k!/(n+ k)!

(k − 1)!/(n+ k − 1)!
=

k

n+ k
, (5)

where we have made use of Eqs. (2) and (3) and the
fact that P (k) = 1/n is independent of k. Thus, an
appropriate Monte Carlo step is one in which with equal
probability we propose either to decrease or increase k
by 1; moves k → k − 1 are always accepted (provided
they are possible at all, i.e., whenever g has k−1 or fewer
non-empty groups), and moves k → k + 1 are accepted
with probability k/(n+ k).
This procedure constitutes a complete algorithm for

determining the best-fit value of k but, helpful though it
is as an illustration of the proposed method, it turns out
to perform poorly in most real-world situations, for well-
understood reasons. The ordinary stochastic block model
used here is known to give a poor fit, and hence poor re-
sults, for most real-world network data, because it fails
to match the broad degree distributions commonly ob-
served in such data [11, 19]. The solution to this problem
is to use a more elaborate model, the degree-corrected
stochastic block model, which is able to fit networks with
any degree distribution. In this model one defines an ad-
ditional set of continuous-valued node parameters θi, one
for each node i, and the expected number of edges be-
tween any pair of nodes i, j becomes θiθjωrs, where again
r and s are the groups to which the nodes belong. As
discussed in [11], the parameters θi allow us to indepen-
dently control the average degree of each node and hence
match any desired distribution, while the parameters ωrs

control the community structure as before.
The model is not yet completely specified, however,

because there is an arbitrary constant in the definition
of θi: if we increase all the θi in group r by a factor of cr
and correspondingly decrease all ωrs by a factor of crcs,
the probability distribution over networks remains the
same, regardless of the values of the cr. In the language
of statistics, the model parameters are not identifiable.
To fix the arbitrary constants one must specify a normal-
ization for the θi in each group, which can be done in a
variety of ways. In our work we impose the condition
that the average value of θi be 1 in every group:

1

nr

∑

i

θi δgi,r = 1, (6)

for all r. This choice is convenient, since it has the effect
of making the average number of edges between two dif-
ferent groups r and s equal to

∑

ij θiθjωrs δgi,rδgj ,s =
nrnsωrs. In other words, with this choice ωrs repre-
sents the average probability of an edge between nodes in
groups r and s, just as it does in the standard stochastic
block model.

With these definitions, the likelihood of a network A
within the degree-corrected model, given a group assign-
ment g and parameter sets θ, ω, is

P (A|g, θ, ω) =
∏
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θ2i ωgigi)
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where di =
∑

j aij is the observed degree of node i, we
have used (6) in the second equality, and we have again
neglected an unimportant multiplicative constant.
We assume maximum-entropy priors as before, which

again implies an exponential distribution p−1e−ω/p for ω.
For θ it implies a uniform distribution over the reg-
ular simplex defined by Eq. (6). Integrating over θ
and ω, we find the value of P (A|g) in the degree-corrected
model to be the same as that for the uncorrected model,
Eq. (4), except for an extra multiplicative factor of
∏

r:nr 6=0 n
κr
r (nr−1)!/(nr+κr−1)! where κr =

∑

i diδgi,r
is the sum of the degrees of the nodes in group r. All
other formulas remain the same as for the uncorrected
model. Modest though the change in P (A|g) might seem,
it produces a substantial difference in the behavior of the
model, giving us a method that now works well on net-
works with any degree distribution.
Implementation of the complete method is straight-

forward. At each time-step we perform either a group-
update Monte Carlo step with probability 1 − q or a k-
update step with probability q, where q = 1/(n+ 1), so
that one k-update is performed on average for every n
group updates (one “sweep” of the system in the lan-
guage of Monte Carlo simulation). Run time per sweep
is linear in n, and we typically perform a few thousand
sweeps in total, recording the value of k at regular inter-
vals. The calculations for the figures in this paper took
seconds to minutes per network on a standard desktop
computer, depending on network size. The largest sys-
tem we have studied comprised about 100 000 nodes and
800 000 edges and required an hour of running time for
10 000 Monte Carlo sweeps. On some networks, particu-
larly those with very weakly connected communities, the
algorithm can get stuck in metastable states, in which
case faster equilibration may be achieved by performing
repeated runs on the same network with random initial
conditions and using results from the run that achieves
the highest average likelihood. The computer code for
our implementation of the method is available on the
web [30].
We have tested the method on a range of different net-

works, including computer-generated (“synthetic”) net-
works with known community structure as well as real-
world examples. Figure 1 shows results for synthetic
networks generated using the standard (non-degree-
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FIG. 1: Tests of the method on synthetic networks gener-
ated using the stochastic block model. (a) Diameter of points
represents the likelihood P (k|A) of inferred values of k as a
function of true k for networks with k groups of size 250 nodes
each. Each node has an average of 16 edges connecting it to
its own group and 8 edges to each other group. For each
value of k we performed 10 runs of 2000 Monte Carlo sweeps
each (plus 1000 for equilibration) and took our results from
the run that found the highest average likelihood. Correct
inference would place most weight along the dashed diagonal
line. (b) The fraction of runs detecting the correct number
of groups in stochastic block models with k = 4 groups of
250 nodes each and average degree 16, as a function of the
strength of the community structure. The vertical dashed line
represents the theoretical detectability threshold below which
every algorithm must fail. Each point is an average over 1000
networks and success is defined as assigning an absolute ma-
jority of the probability P (k|A) to the correct value of k.

corrected) stochastic block model with edge probabili-
ties ωrs equal to cin/n when r = s (in-group connec-
tions), cout/n when r 6= s (between-group connections),
and cin > cout, so that the network shows traditional
assortative structure. Figure 1a shows results for the
likelihood P (k|A) for networks with a range of values
of k and, as the figure shows, the algorithm overwhelm-
ingly assigns highest likelihood to the correct value of k
in every case. We can make the problem more challeng-
ing by decreasing the difference cin − cout between the
numbers of in- and out-group connections, thereby gen-
erating networks with weaker community structure that
should be harder to detect. Typical community detec-
tion algorithms show progressively poorer performance
as structure weakens and it can be proved that when it
is sufficiently weak the structure becomes undetectable
by any means, a phenomenon known as the detectability
transition [31, 32]. We see similar behavior in detecting
the number of communities, as shown in Fig. 1b, where
we apply our algorithm to 1000 networks for each of sev-
eral values of cin− cout while holding k fixed and plot the
fraction of runs on which we arrive at the correct answer
for the number of groups. Below the detectability thresh-
old the algorithm fails to determine the correct result, as
all algorithms must, but as we move above the threshold
performance improves and for larger values of cin − cout
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FIG. 2: Posterior probabilities P (k|A) calculated using the
method of this paper for four real-world networks with known
community structure, as described in the text. For each net-
work we performed 10 runs of 50 000 Monte Carlo sweeps each
(plus 50 000 for equilibration), taking our results from the run
that finds the highest average likelihood.

the algorithm once again returns the correct answer on
almost every run.
Figure 2 shows the results of tests of the algorithm

on four real-world networks whose community struc-
ture is widely agreed upon: the well-studied “karate
club” network of Zachary [33], which is generally thought
to have two groups; the dolphin social network of
Lusseau et al. [34], also thought to have two groups;
the co-appearance network of fictional characters in the
novel Les Miserables by Victor Hugo [12], with six groups
corresponding to major subplots of the story; and the
network of games between Division I-A American col-
lege football teams in the year 2000 [12], with 11 groups
corresponding to the established conferences of US colle-
giate sports competition (or, arguably, 12 if one includes
the independent teams that do not belong to any con-
ference). The figure shows histograms of the estimated
probabilities P (k|A) for each of these four networks and
the peak probability falls at the agreed-upon value in
each case—at k = 2, 2, 6, and 11 respectively. In each
case the accepted value easily outweighs any other and
the choice of group number is clear, except in the case
of the karate club network, for which k = 2 does receive
the most weight but k = 1 comes a close second. This
is an interesting finding in the context of this particular
network, which comes from a study of a university stu-
dent club that was a single group at the time the network
was observed but broke into two shortly afterwards. Our
results fit this observation neatly, indicating that the net-
work could be construed either as a single community or
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as a pair of communities.
Once the value of k for a network has been determined,

one does not necessarily need to perform a separate calcu-
lation to determine the community structure itself. Since
our Monte Carlo procedure samples group assignments g
from the distribution P (k, g|A), one can simply examine
the subset of sampled assignments corresponding to the
inferred value of k to get an estimate of the posterior
distribution over network divisions. In particular, one
can calculate the marginal probability that a node be-
longs to any given group to within an overall constant
from P (gi = r|k,A) ∝

∑

g δgi,rP (k, g|A) and then as-
sign each node to the group for which this probability
is largest, obviating the need for other methods of fit-
ting the block model, such as maximization of the profile
likelihood [11, 23].
In summary, we have given a first-principles method

for inferring the number of communities into which a
network divides. In tests, the method, based on simulta-
neous Monte Carlo sampling of the distribution of com-
munity divisions and community number, gives correct
answers on a range of benchmark networks with known
community structure. The method can be scaled up,
without significant modification, to allow the analysis of
data sets with hundreds of thousands of nodes or more.
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