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Abstract

Fluctuations in the physical properties of biological machines are inextricably linked to their

functions. Distributions of run-lengths and velocities of processive molecular motors, like kinesin-

1, are accessible through single molecule techniques, but rigorous theoretical models for these

probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the

resistive force (F ) dependent velocity (P (v)) and run-length (P (n)) distribution functions of generic

finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1

data for both P (n) and P (v) using the detachment rate as the only parameter. In addition, we

predict the F -dependence of these quantities. At non-zero F , P (v) is non-Gaussian, and is bimodal

with peaks at positive and negative values of v, which is due to the discrete step-size of kinesin-1.

Although the predictions are based on analyses of kinesin-1 data, our results are general and should

hold for any processive motor, which walks on a track by taking discrete steps.
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Molecular motors convert chemical energy, typically from ATP hydrolysis, into mechan-

ical work to facilitate myriad activities in the cell, which include gene replication, tran-

scription, translation, and cell division [1–3]. Despite the bewildering variations in their

sequences, structures, and functions, a large number of cellular motors take multiple steps

directionally along linear tracks and are known as processive motors. Well-known in this

category are kinesins [4], myosins [5] and dyneins [6] that carry vesicles and organelles along

microtubules or actin filaments [7, 8], and helicases that unwind nucleic acid strands while

translocating on them [9, 10]. Fundamental insights into their functions have emerged from

single molecule experiments [2, 11–19] combined with discrete stochastic (or chemical ki-

netics) models [20–24]. These studies have focused on quantities like mean velocity, mean

run-length, and the dwell-time distribution [18, 25], at varying external forces and ATP con-

centrations. However, much less attention has been paid to distributions of motor velocities

in experiments or in theoretical models. Given the inherently stochastic nature of the motor

cycle, velocity fluctuations must play an important role in motor dynamics. However, up to

now analytical tools to interpret the fluctuation data, readily available from experiments, do

not exist. This letter seeks to address that gap, providing universal closed-form expressions

for velocity and run-length distributions valid for any processive motor.

Let us assume a motor takes steps of size s on a polar track, and moves a net displacement

ns before detaching at time t, where n is an integer known as the run-length. Then the

natural definition for average velocity for the trajectory is v = ns/t. Our work tackles

several key questions about the distributions P (v) and P (n) for molecular motors under

force. When can P (v) be represented by a Gaussian, an approximation used to analyze

experiments [13, 14, 26–29]? If the detachment rate from the polar track γ is negligible

compared to the forward rate k+ (Fig 1B), the motor walks a large number of steps forward

before detachment then P (v) should approximately be a Gaussian, as expected from the

Central Limit Theorem (CLT). However, what is the behavior of P (v) and P (n) when γ

becomes comparable or even larger than the other rates involved, situations encountered in

single-molecule experiments in the presence of external force (Fig 1C [2, 30])? To address

these questions, we derive exact analytical expressions for P (n) and P (v), using a simple

but accurate kinetic model with only three rate parameters (Fig 1B). The model has a

broad scope, allowing analysis and prediction of experimental outcomes for a large class of

processive motors and other rotary machines.
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The central results of this work are: (i) At non-zero F , P (v) is non-Gaussian because γ

cannot be neglected compared to k+, resulting in the number of steps being not large enough

for CLT to be valid. Even when F = 0 there is a discernible deviation from a Gaussian

distribution. (ii) Surprisingly, when F 6= 0, P (v) is asymmetric about v = 0 with a bimodal

shape containing peaks, one at v > 0 and the other at v < 0. With increasing F , the peaks

become symmetrically positioned with respect to v = 0 and completely symmetric at the stall

force FS. (iii) As F exceeds FS, reaching the superstall regime, the peak position at v > 0

(v < 0) moves to higher (lower) values. These counter-intuitive results are consequences of

the discrete nature of steps that molecular motors take on their tracks.

In our simplified model (Fig. 1B) the motor can move towards the plus/minus ends

of the track or detach from each site. The theory with intermediates, required to capture

the full complexity of the stepping kinetics observed in experiments, is presented in the

Supplementary Information [31]. The distribution of times that the motor stays attached

to the track is P (t) = γe−γt. The probability, P (m, l), that the motor takes m forward, l

backward steps before detachment is,

P (m, l) =

(

k+

kT

)m(
k−

kT

)l(
γ

kT

)

(m+ l)!

m!l!
, (1)

where kT = k+ + k− + γ is the total rate, k+

kT
(k

−

kT
) is the probability of taking a forward

(backward) step, and γ
kT

is the detachment probability. The final term in Eq.1 accounts for

the number of ways of realizingm forward and l backward steps. The run-length distribution,

P (n), where n = m− l, is

P (n) =

∞
∑

m,l=0

(

k+

kT

)m(
k−

kT

)l(
γ

kT

)

(m+ l)!

m!l!
δ(m−l),n. (2)

We find that P (n = 0) = γ√
k2
T
−4k+k−

and P (n ≷ 0) takes the simple form (see SI for details),

P (n ≷ 0) =

(

2k±

kT +
√

k2
T − 4k+k−

)±n
γ

√

k2
T − 4k+k−

. (3)

The velocity distribution is given by P (v) =
∑∞

n=−∞

∫∞

0
dt δ(v − n/t)P (n, t), with dis-

tances measured in units of step-size s. Here P (n, t) =
∑∞

m,l=0 δ(m−l),nP (m, l, t), where the

joint distribution P (m, l, t) for m forward, and l backward steps with detachment at t is (see

SI for details),

P (m, l, t) =
tm+l

m!l!
(k+)m(k−)lγ exp(−kT t). (4)

3



FIG. 1: A: Schematic of a kinesin molecule walking hand-over-hand on a microtubule (MT) with

a discrete step-size of 8.2 nm. B: Sketch of the model in which the yellow circle represents the

center-of-mass (COM) of the kinesin (capturing the point in red in A). The position of the COM

on the MT is denoted by i. Kinesin can step ahead, back, and detach from the microtubule with

rates k+, k−, and γ respectively. C: Decomposition of the resistive optical trap force F applied

to the bead attached to the coiled-coil, along components parallel (F‖) and perpendicular (F⊥)

to the MT axis [2]. D: Energy landscape for forward and backward rates with the blue and the

red curves corresponding to zero and non-zero F respectively. F‖ increases the backward rate and

decreases the forward rate; F⊥ increases the detachment rate.

The exact expressions for P (v ≷ 0) are

P (v ≷ 0) =
γ

|v|

∞
∑

n=0

(

n

|v|

)n+1
1

n!

(

k±e−
kT
|v|

)n

0F1

(

;n+ 1;
n2k+k−

|v|2
)

. (5)

Our approach also allows us to compare P (v) with the distribution of P (vinst) of “instan-

taneous velocity”, an alternative measure of motor dynamics. If the dwell-time of a motor

at a site is τ , then vinst = s/τ . The distribution P (vinst), can in principle be computed from
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FIG. 2: Simultaneous fits (red lines) of zero force Kin1 data (blue dots) [13] for run-length (A:

P (n)–Eq. 3) and velocity (B: P (v)–Eq. 5) distributions. The dashed line in B is a Gaussian fit. It

should be stressed that the results in (A) and (B) were fit using a single parameter, γ0, with the

extracted zero force values for k+0 and k−0 in Table I(a).

TABLE I: Force-dependent rates for Kin1. (a) and (b) are rates at F = 0 obtained from experimen-

tal data on Kin1/acetylated microtubule with ratio
k+
0

k−
0

= 221 [12] and
k+
0

k−
0

= 802 [35] respectively.

The error in γ0, obtained by simultaneously fitting P (n) and P (v) (Fig. 1), is estimated using the

bootstrap sampling method [36]. (c)-(g) are rates at different values of load, calculated using the

F = 0 values in (a).

F k+ k− γ

(pN) (s−1) (s−1) (s−1)

(a) 0 133.4 0.6 2.3±0.3

(b) 0 133.0 0.2 2.3±0.3

(c) 3 47.1 1.8 6.2

(d) 4 33.3 2.5 8.7

(e) 5 23.5 3.6 12.1

(f) 7.6 9.5 9.3 29.0

(g) 8.5 7.0 12.8 39.1

P (τ), the distribution of dwell-times [32–34]. Analytical results for P (vinst), discussed in the

SI, show that it is not a Gaussian even at F = 0, which is the approximate shape expected

on general physical considerations.
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We first analyze the F = 0 data for kinesin-1 (Kin-1) [13] using our theory. The motility

of Kin-1, belonging to a family of motors that walks on microtubule filaments, has been

extensively studied since its discovery [37]. Experiments have shown that Kin-1 walks hand-

over-hand [38, 39] taking discrete steps in multiples of s = 8.2nm with each step being almost

identical [11, 16, 17, 40]. The 8.2 nm is commensurate with the α/β tubulin periodicity of

a single MT protofilament, here modeled as a one dimensional lattice (Fig 1A) [4]. For

Kin-1 the measured F = 0 mean velocity is 1089 nm/s (Fig. 2B), which implies that

k+
0 − k−

0 = 132.8 step/s. The ratio
k+
0

k−
0

is not reported in [13], which forced us to use data

from other sources. Solving these two equations, we get k+
0 and k−

0 corresponding to two

experimental values for
k+
0

k−
0

= 221 [12] or
k+
0

k−
0

= 802 [35] (Table I (a) and (b), note that even

though the ratios are different, k+
0 and k−

0 are similar.) Using k+
0 and k−

0 , we obtained the

F = 0 detachment rate γ0 by simultaneously fitting the measured [13] velocity distribution

using Eq. 5 and run-length distribution using Eq. 3. The good fits to both data sets (Fig. 2)

using a single parameter shows that our theory captures the basic aspects of Kin-1 motion.

More importantly, the value of the only unknown parameter γ0 is the same in Table I(a)

and (b) and in very good agreement with an independent way of obtaining the detachment

rate (see SI). While analyzing the experimental data, we convert velocity in step/s to nm/s

(or vice versa) by multiplying (dividing) by s = 8.2 nm.

The distribution P (v) has the same form as in Eq. 5 when the motor is subjected to

an external force, F , (Fig. 1C) except k+(F ) and k−(F ) are dependent on F . We model

these rates using the Bell model, k±(F ) = k±
0 e

−
F‖d

±
‖

kT where F‖ is the component of the force

parallel to the microtubule, k+
0 and k−

0 are the forward and backward rates at F = 0, and the

transition state distances d+‖ and d−‖ are defined in Fig. 1D. We can rewrite the arguments

of the exponentials as k±(F ) = k±
0 e

−Fd±

kT , defining effective distances d± = d±‖ |F‖/F |.

We obtained |d+| = 1.4 nm and |d−| = 1.6 nm (Fig S5), by fitting the average velocity

as a function of force [12] with v(F ) = (k+(F ) − k−(F )) subject to the constraint |d+| +
|d−| = 2.9 nm [12], assuming that d± are independent of F . Note that |d+| + |d−| =

2.9 nm is different from the mean step-size (8.2 nm) of Kin-1, because the force transmitted

to the kinesin heads is not parallel to the direction of the motor movement (Fig 1C), so

d± = d±‖ |F‖/F | < d±‖ . An alternate mechanism for |d+| + |d−| being less than 8.2 nm has

been proposed elsewhere [41]. Similarly, the F -dependent detachment rate is taken to be

6



γ(F ) = γ0 exp
(

F⊥dγ
kT

)

, which we write as γ(F ) = γ0 exp
(

|F |
Fd

)

where Fd =
|F |kT
F⊥dγ

(≈ 3 pN) is

the force at which the two-headed kinesin disengages from the microtubule [30]. At distances

greater than the transition state distance dγ the motor is unbound from the MT. Table I

(c)–(g), listing the three rates at several values of F , shows that γ(F ) is appreciable relative

to k+(F ) at F > 3 pN, which has profound consequences on P (v), as we show below.

The normalized P (v 6= 0) distributions for different F values are plotted in Fig. 3A using

Eq. 5, showing distinctly non-Gaussian behavior, in sharp contrast to the approximately

Gaussian distribution at F = 0 (Fig. 2B). By stringent standards even at F = 0, P (v) is

not a Gaussian [42] but the extent of deviation from a Gaussian increases dramatically as F

increases. This happens because γ increases and eventually becomes larger than the other

rates (Table I), thus decreasing kinesin’s processivity (Fig. S5-D). As a result, CLT does

not hold resulting in P (v) to exhibit non-Gaussian behavior.

More unexpectedly, the predicted F -dependent P (v)s are bimodal (Fig. 3A). As F in-

creases, the peak at v < 0 becomes higher and reaches the same height as the one at v > 0

at the stall force FS. For forces below FS = 7.63 pN [12], the location of the peak of the

P (v > 0) curves, vP , shifts to lower velocity values as F increases, but then moves to higher

ones at F > FS (vP at F = 8.5 pN (green curve) is larger than vP at FS = 7.6 pN (red

curve)).

These two counter-intuitive results are direct consequences of the discrete step size of

kinesin on the MT. For large values of γ(F ), corresponding to large forces (where the bimodal

structure is most prominent), the time the motor spends on the microtubule is necessarily

small (t ∼ 1/γ(F )). Since ns has to be an integer multiple of 8.2 nm, it cannot be less than

8.2 nm, implying that velocities close to zero (both positive and negative) are improbable,

giving us a full explanation of the two-peak structure in P (v). In addition, for F ≤ 5 pN,

vP can be estimated using 8.2(k+(F )−k−(F )) nm/s. As F increases, k+(F ) decreases while

k−(F ) increases (Table I, Fig. 1D), leading to decrease of vP with F . However, vP cannot

shift to arbitrarily low values of the velocity due to the discreteness of the step-size. As the

force increases beyond FS, for most of the trajectories that contribute to the v > 0 peak,

the motor falls off after taking just one step (smallest n) (Fig. S5D), and at the same time

the detachment time continuously decreases, shifting vP to larger velocities (v ∼ 1
t
).

The discrete nature of the stepping kinetics is less significant when a large number of n

terms contribute to P (v). The results for P (n) in Fig. S5D show that at F = 0, Kin-1 takes
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FIG. 3: A: Predictions of the normalized velocity distributions ((P (v > 0)+P (v < 0))/(1−P (v =

0))) at different force values. The inset shows P (v = 0) as a function of F . The dashed line is the

probability (γ/kT ) that the motor detaches without taking a step. The solid line is the cumulative

probability, P (n = 0) = P (v = 0) = γ√
k2
T
−4k+k−

, the total number of motors detaching with

zero average velocity and zero net displacement, which includes both motors that detach without

stepping, and those that return to their starting location. B: Kinetic Monte Carlo simulations

(blue histograms) of the velocity distribution at 7.6 pN load, with a Gaussian step-size distribution,

experimentally determined for Kin-1 to have a mean of 8.2 nm and standard deviation of 1.6 nm

[17]. The solid lines in both graphs are the exact P (v)–Eq. 5 obtained by assuming that all motors

take identical 8.2 nm step. Although inclusion of distribution in the step size leads to minor

deviations in P (v) the predicted bimodality persists.

in excess of 50 steps of net displacement before detaching. It is then reasonable to replace

the summation in Eq. 5 by an integral. An ansatz for the approximate velocity distribution,

PA(v), which is highly accurate for F = 0 where γ ≪ k+ (Fig. 2B), is given by

PA(v > 0) =
γ

v2
(1 + 4a)−1/4

[

2 ln

(

1 +
√
1 + 4a

2
· v

k+

)

− 2
√
1 + 4a+ 2

kT
v

]−3/2

, (6)

where a = k+k−

v2
. However, for F 6= 0 the values of γ are such that only few terms in Eq. 5

are non-negligible, thus making the approximate expression (Eq. 6) invalid (Fig. S2). As

F increases the average number of forward steps decreases dramatically. At F = 3 pN the

probability of Kin-1 taking in net displacement for more than 10 steps is small. This results

in qualitative differences between PA(v) (continuum steps) and P (v) (discrete steps), which

is dramatically illustrated by comparing Figs. 3A and Fig. S3. Thus, the discreteness of the

motor step must be taken explicitly into account when analyzing data, especially at non-zero
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values of the resistive force.

Although we assumed that stepping occurs in integer multiples of 8.2 nm, experiments

show that the step-size distribution has a finite but small width for Kin-1[17], which could

possibly affect the bimodal structure in P (v) at F 6= 0. Since inclusion of the distribution in

the step-sizes makes the model analytically intractable, we performed kinetic Monte Carlo

(KMC) simulations [43]. In this set of simulations, every time kinesin jumps forward or

backward, we assume that the step-size has a Gaussian distribution with mean s = 8.2

nm, and standard deviation σ, varied from 0 nm to 8 nm. As σ increases, the two-peak

structure gets washed out. However, for the experimentally measured value of σ = 1.6 nm,

the two-peak velocity distribution is present (Fig. 3B and S4C) (we converted the standard

error SE = 0.03 nm from the measurements (see Fig. 2 in [17]) on wild type kinesin LpK

to σ = SE
√
N = 0.03

√
2993 = 1.6 nm). We conclude that the key predictions in Fig.

3A are robust with respect to inclusion of a physically meaningful step-size distribution

and experiments should be able to discern the two-peak structure in P (v) at F 6= 0. The

predictions for P (v) at various forces with σ = 1.6nm are displayed in Fig. S5A–C.

To test the effect of intermediate states, which apparently are needed to analyze ex-

periments [25], on the bimodality of P (v), we generalized the model to include a chemical

intermediate (Fig. S6) and computed P (v) exactly (see SI for details). We found that the

important bimodal feature is still preserved, thus further establishing the robustness of our

conclusions.

For F 6= 0 the motor would take only a small number of steps because γ(F ) is an

increasing function of F , raising the possibility that the predictions in Fig. 3A may not be

measurable. To account for potential experimental limitations we calculated the conditional

probability P (v|n > n0) which is obtained by neglecting the first n0 terms in Eq. 5. Fig. S10

shows that even with this restriction the bimodal distribution persists especially near the

stall force where it is prominent.

There are substantial variations in force velocity (F -v) curves for Kin-1 in different exper-

iments. Even the shape of the F -v curve in [12] does not agree with the results in [35, 44].

For completeness, we analyzed the F -v curves reported in [35, 44]. The theoretical fits are in

excellent agreement with experiments, which allows us to calculate P (v) at F 6= 0. The re-

sults in Fig. S7 show that, just as those in Fig. 3A, the predicted bimodality in P (v) remains

regardless of the differences in the shapes of the F -v curves among different experiments.
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In summary, exact theoretical analysis using a simple model for motor motility quan-

titatively explains the zero force velocity and run-length distributions simultaneously for

Kin-1, with just one physically reasonable fitting parameter. With an average run-length

of ∼632 nm = 77 steps [13], we expect the velocity distribution of Kin-1 to deviate from

a Gaussian (albeit slightly) even at zero force [42]. Based on the analysis of the zero force

data, we calculated the load dependence of the velocity distribution of Kin-1 and discovered

that the discrete nature of kinesin’s steps leads to an unexpected bimodal structure in the

velocity distribution under load. This surprising result can be tested in single molecule ex-

periments, most readily accessed near the stall force where the motor has equal probability

of moving forward or backward. An example of such a trajectory may be found in Fig. 1

of [35]. It remains to be seen if our predictions can be readily tested within the precision

of single molecule experiments. Although set in the context of Kin-1, our general theory

can be used to analyze experimental data for any molecular motor for which the model in

Fig. 1B is deemed appropriate. As a result, our major results should hold for any finitely

processive motor that takes discrete steps.
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