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The surface of a 3D topological insulator is described by a helical electron state with the electron’s
spin and momentum locked together. We show that in the presence of ferromagnetic fluctuations the
surface of a topological insulator is unstable towards a superconducting state with unusual pairing,
dubbed Amperean pairing. The key idea is that the dynamical fluctuations of a ferromagnetic layer
deposited on the surface of a topological insulator couple to the electrons as gauge fields. The
transverse components of the magnetic gauge fields are unscreened and can mediate an effective
interaction between electrons. There is an attractive interaction between electrons with momenta in
the same direction which makes the pairing to be of Amperean type. We show that this attractive
interaction leads to a p-wave pairing instability of the Fermi surface in the Cooper channel.
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Introduction.— It is known that the Coulomb inter-
action in normal metals is usually screened by electrons
leading to short-ranged and momentum independent in-
teractions, which gives rise to conventional Fermi liquid
theory [1, 2]. The current-current magnetic interaction
between electrons, where the interaction is mediated by
exchange of transverse photons, however, remains un-
screened. Due to the interaction of the gapless bosonic
modes with fermions, nonanalytic corrections arise in
various physical quantities which clearly point to non-
Fermi liquid behavior [3, 4]. The effect is purely relativis-
tic and is proportional to (vF /c)

2, where vF is the Fermi
velocity of electrons and c is speed of light. Hence, the
corresponding bare interaction is comparatively smaller
than coupling constants.

While the relevance of transverse photons in normal
metals and their physical signatures are parametrically
small, the search for nonphoton mediated current-current
interactions has been extended to other systems such as
U(1) gauge fields in the spin liquid description of the
Mott phase of organic compounds [5, 6], a doped Mott in-
sulator [7] and the Halperin-Lee-Read state [8]. The nor-
mal state resistivity of a doped Mott insulator exhibits
a T 4/3 temperature dependence [9] and a T 2/3 contribu-
tion to the specific heat [10, 11] in the presence of the
U(1) gauge fluctuations, which manifestly deviates from
the Fermi liquid. It was also shown that the U(1) gauge
fluctuations can induce a new mechanism for pairing of
the spinons in a gapless spin liquid, so-called Amperean
pairing [12] with a possible application to the pseudogap
phase of cuprate superconductors [13].

Given the maturity of heterostructure materials syn-
thesis and recent progress in topological insulators, in
this letter we propose a realistic system where the inter-
action between the fermions and gapless bosons can be
engineered to realize an effective fermion-gauge theory
and an Amperean superconductor. The system is made
of a ferromagnetic (FM) layer deposited on the surface

of a 3D topological insulator (TI) such as Bi2Te3 and
Bi2Se3. The surface state consists of a single helical Dirac
cone [14, 15], where the electron spin and momentum are
locked together, affecting the transport phenomena and
collective excitations [16, 17].

Some previous works have focused on the effect of
static [18–23] and dynamical [24–27] magnetic fluctua-
tions. We consider the effect of transverse dynamical
magnetic fluctuations on a doped Dirac cone. We will
show that the latter have profound effects on helical
states. Here is a summary of our results: (i) transverse
magnetic fluctuations are unscreened and mediate an ef-
fective interaction between electrons; (ii) the effective in-
teraction is singular at small frequency and momentum
transfer and leads to non-Fermi liquid behavior at very
low energies; (iii) the effective interaction has an Am-
perean form: it is attractive between electrons near the
Fermi surface moving in the same direction; (iv) the at-
tractive interaction leads to a pairing instability of the
Fermi surface, dubbed Amperean pairing.

Model.— Consider a hybrid system of a ferromagnet
with spin density ρs and the surface of TI as shown in Fig.
1(a). The continuum action of a quantum ferromagnet
with local moments S = Sn is given by [28]

Sm =
ρs
2

∫
dτddx

[
−2iA(n) · ∂τn + κ (∇n)

2
]
. (1)

Here, κ = JSa20, where J is the ferromagnetic exchange
coupling and a0 is the lattice spacing. We use κ to define
magnon mass ms via κ = 1/2ms (~ = 1) below. The
first term in the action is the Wess-Zumino term where
the vector potential A creates a local magnetic field as
∇n × A(n) = n. We assume that the magnetic order
in the ferromagnet is along the z-direction z. In order
to describe the ferromagnetic magnons l(τ, r), we write
n = z

√
1− |l|2 + l, where |l| � 1 and z · l = 0, leading to

A = 1/2(z× l). Neglecting orders higher than quadratic
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FIG. 1: (color online) (a) A ferromagnetic (FM) layer deposited on the surface of a topological insulator (TI), (b) the blue
(light) disk indicates the region in momentum space bounded by a Fermi surface with Fermi energy µF . Small arrows on the
Fermi surface indicate an attractive interaction between electrons (red balls) with momenta p1 and p2 and the angle between
them is φp1,p2 = φp2 −φp1 , (c) Feynman diagrammatic representation of Bethe-Salpeter equation and the interaction in direct
and exchange channels, and in (d) we show the regions with the non-Fermi liquid behavior and pairing instability at zero
temperature. The horizontal axis stands for the frequency of transverse magnon excitations with propagator DT (q). In the

low frequency regime, the excitations are highly damped and Σ(ω) ∼ ω2/3, while in the opposite regime up to an energy scale

given by α2 the magnons are described by a bare propagator D0
T (q) and Σ(ω) ∼ ω1/2 dominates over the linear term. In both

regimes the system is unstable to Amperean pairing. For some experimentally relevant parameters the propagator of magnons
falls into the damped regime shown by a blue solid disk with strong instability to Amperean pairing.

terms, the action of magnons is written as [29]

Sm =
ρs
2

∫
dτdxd

[
i(l× ∂τ l)z + κ(∇l)2

]
. (2)

The following action describes the Dirac electrons and
their coupling to the ferromagnet moments:

SD =

∫
dτdrψ̄ [∂τ + vF (p× σ)z − µF − gn · σ]ψ. (3)

The spinor fields ψ(τ, r) = (ψ↑, ψ↓)
T describe the elec-

trons and σ is a vector of the Pauli matrices, represent-
ing spin. Other parameters are the Fermi energy µF
and the coupling g between electrons and magnetic mo-
ments. As we concentrate on the doped regime which is
relevant to the experiments [14, 15], we will ignore a uni-
form coupling gσz to the electrons that opens up a gap
of magnitude 2|g| at the Dirac node.

The helical nature of surface states allows us to present
the magnetic fluctuations as dynamical gauge fields a =
gv−1F l × z minimally coupled to electrons. It can be
split into longitudinal and transverse components as a =
aL + aT so that ∇ · aT = 0 and ∇× aL = 0. The trans-
verse part is responsible for the emergent magnetic field
Bz = (∇ × aT )z = −gv−1F ∇ · lL perpendicular to the
surface, and the longitudinal part generates an emergent
electric field E = −∂taL = −gv−1F ∂tlT . Here, lL and lT
are, respectively, the longitudinal and transverse compo-
nents. A local gauge transformation can eliminate the
longitudinal part of the gauge field aL and transforms it
to the scalar potential ϕ, i.e. the temporal component.

The resulting action, describing electrons coupled to the
transverse gauge field and the scalar potential, can be
written as follows.

SD =

∫
dτdrψ̄ [∂τ + vF (Π × σ)z − µF + iϕ]ψ, (4)

where Π = p− aT .
Bosonic propagators.— We express the bare magnon

action in Eq. (2) in terms of transverse and tempo-
ral components. We obtain the temporal D0

ϕ(q) =
〈ϕ(−q), ϕ(q)〉 and transverse D0

T (q) = 〈aT (−q), aT (q)〉
propagators by, respectively, integrating out the trans-
verse and temporal fields as follows.

D0
ϕ(q) =

1

2ρs

2κq2n
q2n +Ω2

q

, D0
T (q) =

1

2ρs

2Ωq

q2n +Ω2
q

. (5)

Here, q = (qn,q), where qn = 2nπ/β with β = 1/T ,
and q is 2d momentum. We use real frequencies Ω and
ω for analytically continued boson and fermion propaga-
tors, respectively, throughout. The magnon dispersion is
Ωq = κ|q|2. As we are interested in the low frequency
regime, where the transverse field propagator is singu-
lar and the Amperean pairing sets in, the propagator
for temporal fields is not singular enough and can be ig-
nored. Therefore, the pairing instability sets in even in
the presence of a repulsive interaction due to the tempo-
ral components [9]. We are left with a theory of helical
electrons coupled to the massless and unscreened trans-
verse magnons. We write the latter in terms of bare
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and dressed magnon propagators characterized by a di-
mensionless coupling constant α0 = g2ρF /ρsΩs = uη−1,
where ρF is the density of states at the Fermi surface
and Ωs = ηµF is to be understood as a maximum energy
transferred by magnons. Here, we introduced two di-
mensionless controlling parameters u = g2ρF /ρsµF and
η = mD/ms, where mD = µF /v

2
F is to be interpreted as

the mass of Dirac electrons. For a typical set of param-
eters, which we discuss at the end of the paper, we have
α0 ∼ 1 and η � 1. Hence, not only does the strength
of the Amperean interaction becomes singular especially
near the bosonic poles, but it also acquires moderate
strength even away from the bosonic poles. The pres-
ence of a small parameter η � 1, which implies that
magnons are much slower than Dirac fermions, allows us
to neglect vertex corrections in the spirit of the Migdal
theorem [30, 31]. As a result, the dressed propagator of
transverse fields in the one-loop approximation is given
by

DT (q) =
1

2ρs

2Ωq

Ω2
q + q2n + γ0Ωq

|qn|
v|q|

, (6)

where γ0 = g2ρF /ρs is the Landau damping. In the
regime Ω � α1µF , where α1 ' α0η

2, the Landau damp-
ing term in the denominator of Eq. (6) can be ignored
reducing the dressed propagatorDT (q) to the bare propa-
gator D0

T . On the other hand for Ω � α1µF the Landau
damping term dominates and the propagator becomes
DT (q) = 1/ρs(κ|q|2 + γ0|qn|/v|q|) resembling the crit-
ical bosonic soft modes Ω ∼ qz with dynamical expo-
nent z = 3 appearing in different contexts such as gauge
theory [32] of high-Tc superconductors [33] and critical
ferromagnetic systems [34]. There are also other energy
scales ω ∼ α2,3µF , where α2 ' α2

0η and α3 ' α2
0, which

determine the non-Fermi liquid behavior of electrons. We
will discuss this below.

Transverse magnon-mediated interaction.— Upon in-
tegrating out the transverse magnons and projecting into
the conduction band, we obtain the effective interaction
between electrons as

Sint = − 1

2Vβ
∑
p1,p2,q

Vp1,p2(q)ψ̄p1+qψ̄p2−qψp2ψp1 , (7)

where V is the volume of the system. Note that the
fermionic fields ψ’s have only a conduction band index, so
the interaction is between the effective spinless fermions.
The key observation in Eq. (7) is the form of the inter-
action: that is Vp1,p2(q) = g2DT (q)Λp1,p2(q) with

Λp1,p2
(q) =

1

2
[cos(φp1

− φp2
)− cos(φp1

+ φp2
− 2φq)] ,(8)

where φ’s are the angles characterizing the corresponding
momentum. For small momentum transfers |q| � |Q|,
where Q is the Fermi momentum, the angle φq varies

between zero and 2π for fixed incoming momenta, mak-
ing the second term vanish in angular integration on φq.
Thus, Λ depends upon the angle between two incoming
momenta: Λ ' p̂1 · p̂2/2, where the hat stands for unit
vector. Importantly, Λ is positive for electrons moving in
almost the same direction, making the interaction attrac-
tive. This resembles attraction between two wires carry-
ing co-moving currents and is the basis of the Amperean
pairing theory as originally proposed by Lee et al [12].
Hence, the source of attractive interaction in our case is
markedly different from other spin fluctuation mediated
pairings in, e.g., pnictides [35, 36] or UCoGe [37].

The attractive interaction between electrons can lead
to a Cooper-pairing instability that we explore below.
Unlike the conventional superconductors with singlet
pairing between electrons residing on opposite sides of
the Fermi surface, Amperean pairing occurs between elec-
trons residing on the same side of the Fermi surface. This
means that in Eq. (7) the incoming momenta are to be
taken as p1 = Q + p and p2 = Q − p with |p| � |Q|.
This leads to Λ ' 1/2. In examining the pairing instabil-
ity, the interactions should be treated in both direct and
exchange channels [38] due to the spinless interaction.
This amounts to rewriting the interaction as

Sint = − 1

2Vβ
∑
p,k

V (k, p)ψ̄Q+kψ̄Q−kψQ−pψQ+p, (9)

where V (k, p) = 1/4 [DT (k − p)−DT (k + p)] and k =
q + p as shown diagrammatically in Fig. 1(c). Given the
p-wave character of the pair wavefunction, both channels
have the same contributions to the eigenvalue problem
below.
Amperean pairing.— In order to examine the Am-

perean pairing instability of the Fermi surface, we ex-
amine the Bethe-Salpeter equation for the effective in-
teraction in Eq. (9) in the Cooper channel as shown dia-
grammatically in Fig. 1(c).

Γp,k = V (p, k) +
1

β

∑
p′

V (p, p′)GQ(p′)GQ(−p′)Γp′,k,(10)

where GQ(±p) is the dressed Green function of elec-
trons with energy dispersion εQ±p. Since only one of
the momentum components of Γp,k is involved in the
sum, it amounts to an eigenvalue problem. Lets write
Γp,k = Φk(p) and re-cast it into

EΦk(p) =
1

β

∑
p′

V (p, p′)GQ(p′)GQ(−p′)Φk(p′). (11)

This is the Bardeen-Cooper-Schrieffer (BCS) self-
consistency equation and Φ measures the pairing ampli-
tude [39]. The instability towards Amperean pairing is
signaled as E ≥ 1. We shall argue that the strength of
singularity in the Cooper channel depends on the renor-
malization of electrons by transverse magnons via the
electron self-energy Σ(p).
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We now elaborate on the fermionic self-energies in the
regimes where Ω � α1µF and Ω � α1µF ; see also
Fig. 1(d). In the former, the electron propagator is
given by G(p) = 1/[i(pn + εL|pn/µF |2/3sgn(pn))− ε(p)],

where εL = α
2/3
0 µF /2

√
3 and ε(p) is the electron dis-

persion on the surface of the TI. Note that we consid-
ered the frequency dependent self-energy correction near
the Fermi surface. The momentum part only renormal-
izes the mass of the electrons. It turns out that in this
regime the non-analytic term in the self-energy is much
larger than ω in the denominator of the electron propa-
gator. Hence, the system becomes a non-Fermi liquid at
low energies ω � α3µF where α3 ' α2

0. Note that be-
cause α3/α1 ' α0η

−1 � 1, the non-Fermi liquid behavior
persists even up to high frequency transfer of magnons.

On the other hand, for the latter regime where Ω �
α1µF , the transverse magnons are not substantially Lan-
dau damped. In this case the electron propagator is
dressed differently and is given as G(p) = 1/[i(pn +
εN |pn/µF |1/2sgn(pn))−ε(p)], where εN = α0η

1/2µF /8π.
The self-energy could be parametrically larger than ω for
ω � α2µF where α2 ' α2

0η. Note that α1 � α2. Hence,
there exists a set of energy scales α1 � α2 � α3 deter-
mining the behavior of boson and electron propagators.
In treating the eigenvalue equation in Eq. (11), we fo-
cus on low energy limits of non-Fermi liquids set by α1,2

as shown in Fig. 1(d): (i) Landau damped and (ii) non-
Landau damped regimes. In both regimes the system is
unstable to Amperean pairing. We discuss each regime
separately.

(i) In the Landau damped regime the dressed propaga-
tors are analogous to spinons coupled to singular gauge
fields [12]. At zero temperature we replace the Matsubara
sum with an integral over p0 and the momentum integral
over p is written as two one-dimensional integrals over p⊥
and p‖ where p⊥ (p‖) is the momentum component per-
pendicular (parallel) to the Fermi momentum. Following
the ansatz presented in Ref. [12] for the wavefunction
Φ(p) = Φ̃(p⊥)Θ(p2⊥/Q − |p‖|), where Θ is the Heaviside
function, the eigenvalue equation becomes

EΦ̃(p⊥) =

∫
dtK(p⊥, t)Φ̃(t+ p⊥), (12)

where the kernel K(p⊥, t) is given by

K(p⊥, t) =
|t|√

3π(t+ p⊥)2
ln

[
t4/3 + 9(t+ p⊥)4

t4/3 + (t+ p⊥)4

]
. (13)

To get an insight into E, the first approximation
would be to consider a momentum independent wave-
function. The rest of the integral is logarithmically di-
verging, which signals the possibility of pairing. The
existence of a realistic and nontrivial solution, however,
requires that the momentum dependent wavefunction is
taken into account. Our numerical calculations and the
results presented in Ref. [12] show that there exists such

a solution with odd pairing wavefunction, and the cor-
responding eigenvalue becomes larger than unity for a
large enough system. Therefore, the system is unstable
to Amperean pairing. Interestingly enough, the magnetic
coupling g doesn’t appear explicitly in Eq. (13). Thus,
the Amperean pairing sets in even at small couplings, so
long as the bosonic propagator is in the highly damped
regime as shown in Fig. 1(d). Indeed, the instability at
zero temperature here is due to the fact that the kernel
is highly singular. This result indicates that Amperean
pairing occurs even at finite temperatures, which is the
main experimentally-relevant conclusion of this work.

(ii) In the non-Landau damped regime we found the
eigenvalue equation to be less singular. We obtained the
following expression for the kernel in Eq. (12).

K(p⊥, t) =
A

4
√

2π(t+ p⊥)2
ln

[
A2t2 + 9(t+ p⊥)4

A2t2 + (t+ p⊥)4

]
,(14)

where A = µQ. The eigenvalue problem contains no
dimensional parameters. Upon changing variable t →
t − p⊥ and introducing dimensionless variables x = t/A
and y = p⊥/A, the corresponding eigenvalue equation
can be written as follows.

EΦ̃(y) =
1

4
√

2π

∫
dx

x2
ln

[
(x− y)2 + 9x4

(x− y)2 + x4

]
Φ̃(x). (15)

The natural ansatz to check is a constant wavefunction
Φ̃(x) = const. at y = 0 corresponding to pairing between
electrons right at the Fermi surface. This gives rise to
E = 1 in contrast to the logarithmic divergence found
in Landau damped case. This result shows that the sys-
tem is quantum critical on the verge of the Amperean
instability. We need, however, to look for a wavefunction
which is odd in momentum, i.e. a p-wave one. View-
ing the kernel as a matrix, we observed that there exists
such a solution. In fact, the momentum dependent so-
lution shows that the maximum eigenvalue of the kernel
becomes even larger than unity signaling the instability
of the system towards the pairing formation. Therefore,
even in the regime with small energy transfer of magnons,
as shown in Fig. 1(d), the non-Fermi liquid behavior and
pairing instability take place.
Concluding remarks.— In conclusion, we demon-

strated that there exists an Amperean pairing instability
at the surface of a 3D topological insulator when the
Dirac electrons are coupled to ferromagnetic fluctuations.
The key idea is that the ferromagnetic fluctuations are
minimally coupled to the electrons as gauge fields. The
transverse components of the gauge field remains gapless
even in the presence of finite chemical doping; they are
not screened and mediate an attractive interaction be-
tween electrons moving almost in the same direction. We
showed that there exists strong pairing instability and
the system becomes unstable toward a superconducting
state with finite-momentum Cooper pairs. The latter
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state yields some analogy with Fulde-Ferrell-Larkin-
Ovchinnikov state [40, 41], where a non-uniform ground
state appears due to completely different reasons. The
non-uniform ground state can then be probed by various
methods such as scanning tunneling spectroscopy [42],
the Josephson effect [43, 44] and possibly Andreev
reflection [45]. For estimations of energy scales we
used the following typical set of experimentally relevant
parameters g = 25 meV [46–49], ρs = 4 × 1012 cm−2,
µF = 0.1 eV and ms = 3.6 × 1010 eVs2/m2 leading
to values of α0 ∼ 1, u ≈ 1.5 × 10−3 and η ≈ 10−3 for
dimensionless parameters. For this set of parameters,
we found the characteristic energy transfer of magnon
excitations falls into the Landau damped regime, the
case (i), as marked by a blue disk in Fig. 1(d) with a
transition temperature of about Tc ∼ 1 K. Nevertheless,
we also explored the undamped regime, the case (ii), to
emphasize the possible extension of pairing instability by
tuning the parameters so that the latter regime can be
achieved. Two modifications can be made in our system:
instead of heterostructure shown in Fig. 1(a) one could
also use TI/FM even with a metallic ferromagnet such
as Bi/Ni [50], where a transition to superconductivity at
4 K was reported. The main prediction of this work is
that heterosructures (e.g., Bi2Se3 and Bi2Te3 as TI and
EuS and Ni as ferromagnets) straightforwardly achiev-
able with current experimental capabilities [48, 51],
host a non-Fermi liquid state and an exotic Amperean
superconductor.
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