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We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary
boundary conditions in one of D dimensions, and periodic in the remaining D − 1. The key is a Hamiltonian-
dependent separation of the bulk from the boundary. By combining information from the two, we identify a
matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable
indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes
the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson
ring configuration, and predicts that a fractional 4π-periodic Josephson effect can only be observed in phases
hosting an odd number of Majorana pairs per boundary.

Developing a quantitative understanding of the physical
properties of fermionic systems in the presence of non-trivial
boundaries has widespread significance from both a funda-
mental and applied perspective. Not only has the behav-
ior of fermions at a boundary informed leading material-
characterization techniques like angle-resolved photoemis-
sion spectroscopy [1] and the revolution in metrology brought
about by the integer quantum Hall effect [2]; nowadays, sur-
face states of topological insulators and Majorana boundary
modes of topological superconductors [3, 4] play a central role
in state-of-the-art proposals ranging from coherent spintronics
[5, 6] to topological quantum computation [7, 8].

All of the above phenomena are linked by a common theme:
topologically non-trivial band structures [4]. Band structure
theory, including the topological classification of mean-field
fermionic systems [9], rests on a manifestation of crystal
translational symmetry, the Bloch theorem. Since transla-
tional symmetry is broken by the presence of a boundary, it
is remarkable that there exists a connection between the topo-
logical nature of the bulk and the boundary physics – the bulk-
boundary (BB) correspondence [4, 10]. This principle states
that a topologically non-trivial bulk mandates the emergence
of fermionic states localized on the boundary, when bound-
ary conditions (BCs) are changed from periodic to open, and
that such states are distinguished by their robustness against
symmetry-preserving local perturbations. While this heuris-
tics has been numerically validated in a variety of cases, and
rigorous results exist for discrete-time systems described by
one-dimensional quantum walks [11], no general analytic in-
sight is available as yet. Allowing for arbitrary BCs is nec-
essary for any theory of BB correspondence to capture the ro-
bustness of the emerging localized modes to different pertur-
bations [12]. Further motivation stems from studies of quan-
tum quenches [13, 14], where robustness against changes of
the BCs has been argued to control the (quasi)local symme-
tries that characterize the stationary properties in the bulk.
Tackling these issues calls for a procedure to determine en-
ergy eigenstates of lattice Hamiltonians with arbitrary BCs,
comparable in conceptual and computational power to what
the Fourier transform accomplishes in the periodic case.

In this work, we introduce a methodology for diagonalizing

in closed form finite-range quadratic fermionic Hamiltonians
with translational symmetry broken by arbitrary BCs. Our
central insight is a generalization of Bloch’s theorem built on
the recognition that a useful separation of the bulk from the
boundary should be model-dependent. We identify an indi-
cator for BB correspondence, that exploits both information
about the bulk – encoded in “generalized Bloch states” – and
the nature of the boundary – encoded in a “boundary matrix”.
For periodic BCs, we prove that, generically, such indicator
predicts no localized edge state irrespective of the bulk struc-
ture. As an application, we explore the Josephson response of
a s-wave, time-reversal-invariant two-band topological super-
conductor (TS) introduced in [15], and show how the bound-
ary matrix reveals that a fractional Josephson effect occurs
only in the phase with one pair of Majoranas per boundary,
consistent with the physical picture based on fermion parity
switches [16]. Mathematically, our approach generalizes ex-
isting algorithms for diagonalizing banded Toeplitz matrices
[17] to the block-Toeplitz case with arbitrary corner modifica-
tions, with complexity independent upon system size.

Model Hamiltonians.– Consider fermionic systems defined
on a one-dimensional lattice consisting of j = 0, . . . , L − 1
identical cells, each containing m = 1, . . . , d internal de-
grees of freedom, associated for instance to spin and or-
bital motion. Let the creation (annihilation) operator for
mode labeled by (j,m) be denoted by c†j,m (cj,m), and let
ψ†j ≡ [c†j,1 c

†
j,2 · · · c

†
j,d cj,1 cj,2 · · · cj,d] be the corresponding

(2d)-dimensional Nambu vector. We consider finite-range R,
R� L, disorder-free quadratic Hamiltonians of the form

Ĥ =
1

2

R∑
r=0

( L−r−1∑
j=0

ψ†jhrψj+r+

L−1∑
j=L−r

ψ†jgrψj+r−L+h.c.
)
,

(1)
where the matrices hr and gr describe hopping and pairing
among fermions situated r cells apart in the bulk and, respec-
tively, at the boundary. In this way, standard periodic and open
BCs correspond to gr = hr and gr = 0, ∀r. Hamiltonians
of the form (1) arise ubiquitously in mean-field descriptions
of fermionic systems as realized in both solid-state and cold-
atom platforms [18–20].
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Analyzing the single-particle sector of Ĥ suffices to study
its many-body spectrum [18]. That is, we let Ĥ = 1

2Ψ†HΨ,
with Ψ† ≡ [ψ†0 . . . ψ

†
L−1]. In this way, the Hilbert spaceH on

which the single-particle Hamiltonian H acts may be conve-
niently factorized into the tensor product of two subsystems,
H ' CL ⊗ C2d ≡ HL ⊗ HI , associated to lattice and in-
ternal factors. Let the operators cj,m and c†j,m be associated
with vectors |j〉 |m〉 and |j〉 |m+ d〉, respectively. In the basis
{|j〉 |m〉 | 0 ≤ j ≤ L− 1, 1 ≤ m ≤ 2d}, H is given by

H =

R∑
r=0

(
T r ⊗ hr +

(
T †
)L−r ⊗ gr + h.c.

)
, (2)

where T is the left-shift operator T |j〉 ≡ |j − 1〉, ∀j 6= 0,
T |0〉 ≡ 0, and T † implements the corresponding right shift.
Thus,H is a “corner-perturbed” banded block-Toeplitz matrix
with 2R+ 1 bands. Namely, the rth off-diagonal bands above
and below the diagonal have blocks given by bulk interaction
matrices hr and h†r, respectively, whereas boundary terms ap-
pear in the corner of the matrix. The (L−r)th off-diagonal
bands above and below the diagonal, which lie close to the
corners, consist of blocks given by g†r and gr, respectively.

Periodic boundary conditions revisited.– Periodic BCs are
employed in calculations of band structure and bulk topologi-
cal invariants alike [4]. In this case, the single-particle Hamil-
tonianH in Eq. (2) is a circulant block-Toeplitz matrix, which
may be expressed as H =

∑R
r=0 (V r ⊗ hr + h.c.), in terms

of the cyclic left-shift operator V ≡ T + (T †)L−1. Cru-
cially, translational symmetry implies thatH , V , and V † form
a commutative set, allowing for the eigenspectrum of H to be
determined via standard discrete Fourier transform from the
lattice to the momentum basis on HL. For later reference, let
us introduce the generalized z-transformed lattice basis,

|z〉 ≡ 1√
N(z)

L−1∑
j=0

zj |j〉, z ∈ C, z 6= 0, (3)

where N(z) is a normalization constant, and define the “re-
duced bulk Hamiltonian” hB(z) as the matrix-valued symbol
[21] of the block-Toeplitz matrix without boundary terms:

hB(z) ≡
R∑
r=0

(zrhr + z−rh†r). (4)

The generalized discrete Fourier transform in Eq. (3) as-
sociates z to the pseudo-momentum k, with z ≡ eik and
k ≡ 2πq/L, q ∈ {0, 1, . . . , L − 1}, defining the (first) Bril-
louin zone. Then, the eigenvectors of H may be expressed as
|ε〉 ≡ |z〉|u(ε, z)〉, where |u (ε, z)〉 is the eigenvector of the
reduced bulk Hamiltonian hB(z) with eigenvalue ε – which
is simply a reformulation of the familiar Bloch theorem. The
cyclic shift symmetry restricts solutions to the Brillouin zone,
and z to lie on the unit circle. Therefore, by diagonalizing
hB(z) for all q, the complete quasi-particle energy spectrum
and the corresponding eigenvectors may be obtained.

As lattice translation ceases to be a symmetry, the discrete
Fourier transform fails to diagonalizeH . In particular, the left
and right shift operators T and T † do not share a common
eigenbasis, calling for a different diagonalization approach.
We next introduce a new diagonalization method that relies
on a mapping of the Brillouin zone to the full complex plane.

Bulk-boundary separation and bulk equation.– Hamiltoni-
ans with arbitrary BCs are locally symmetric under left and
right shifts in the bulk, however, these symmetries are ex-
plicitly broken at and near the boundaries. The crux of our
approach consists of separating bulk from boundary subsys-
tems. To this end, we define orthogonal projectors onto
the bulk, PB ≡

∑L−R−1
j=R |j〉〈j|, and onto the boundary,

P∂ ≡ 1L − PB , where 1L is the L-dimensional identity
operator on HL. The eigenvalue equation for H then splits
into a bulk and a boundary equation: PBH|ε〉 = εPB |ε〉, and
P∂H|ε〉 = εP∂ |ε〉. The advantage of such a separation is that
one obtains simultaneous (relative) eigenvectors of the bulk-
projected T and T † operators. The resulting eigenvalue equa-
tions are: PBT r|z〉 = zrPB |z〉, PB(T †)r

′ |z〉 = z−r
′PB |z〉,

∀r, r′ ≤ R, while PBT r = 0 = PB(T †)r
′
, ∀r, r′ ≥

L − R. As for periodic BCs, it follows that these “general-
ized Bloch states” are of product form |z〉|u(ε, z)〉, where as
above |u(ε, z)〉 is an eigenvector of hB(z) with eigenvalue ε.

By construction, hB(z) is a small matrix, of dimension
2d × 2d. If 1I denotes the 2d-dimensional identity opera-
tor on HI , the relevant characteristic equation establishes a
functional relationship between ε and z, of the form

P (ε, z) ≡ z2dR det [(hB(z)− ε1I)] = 0, (5)

where the prefactor z2dR ensures that P (ε, z) is a bi-variate
polynomial in ε and z, of degree at most (2R)(2d) = 4dR.
In general, there may exist multiple generalized Bloch states
corresponding to a given value of ε. Let z`(ε), ` = 1, . . . , n,
denote the (non-zero) distinct roots of Eq. (5) for the given ε,
and s`(ε) the corresponding number of linearly independent
eigenvectors of hB(z`) (that is, the nullity of (hB(z`)− ε1I )).
The eigenvectors of H may then be written as linear combi-
nations of degenerate generalized Bloch states:

|ε〉 ≡
n∑
`=1

s∑̀
s=1

α`,s |z`(ε)〉|us(ε, z`)〉, α`,s ∈ C. (6)

In this way, the solutions of the bulk equation provide an
Ansatz for the eigenvectors of H , where the amplitudes α`,s
are yet to be determined [22]. Of particular interest is the
Ansatz for ε = 0, which provides a family of possible zero-
energy modes of the system, independent of the BCs. Notice
that the solution of the bulk equation alone does not imply
the existence of an excitation at a given value of ε, unless the
boundary equation is simultaneously satisfied.

In general, hB(z) is not Hermitian, except on the unit circle
|z| = 1. This is not surprising since such an effective Hamil-
tonian represents an open system, with no boundaries and no
torus topology [23]. Generalized Bloch states exist for every
z 6= 0, realizing an over-complete set of solutions of the bulk
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equation. Those consistent with values of z on the unit circle
are in one-to-one correspondence with the solutions of the in-
finite periodic system. The rest correspond to solutions with
exponential behavior, providing a continuation off the Bril-
louin zone. Thus, Eq. (6) may be regarded as a generalization
of the Bloch theorem to arbitrary BCs, with Eq. (5) providing
a natural analytic continuation of the dispersion relation.

Boundary equation and emergence of localized modes.–
The Ansatz (6) yields an eigenvector of H only if the bound-
ary equation, P∂ (H − ε1) |ε〉 = 0, is satisfied for appropriate
α`,s, with 1 denoting the identity operator on H. For nota-
tional simplicity, let us assume that s` = 1, ∀`, ε, so that
α`,s ≡ α` (see [22, 24] for the general case). To make the
action of the projector P∂ explicit, it is convenient to isolate
the 4dR basis states inH that correspond to lattice sites on the
boundary, by letting {|b〉 ≡ |j〉|m〉 | 0 ≤ j ≤ R− 1, L−R ≤
j ≤ L − 1; 1 ≤ m ≤ 2d}. The above boundary equation
may then be rewritten as

∑n
`=1 α`BL,b`(ε) = 0, where the

“boundary matrix” BL(ε) for size L and energy ε is the (gen-
erally non-square) 4dR× n matrix with entries given by

[BL(ε)]b` = BL,b`(ε) ≡ 〈b|(H − ε1)|z`(ε)〉|u1(ε, z`)〉. (7)

By construction, any set of values of {α`} satisfying Eq. (7) is
a vector in the kernel of BL(ε). Thus, the boundary equation
may be restated as det [B†L(ε)BL(ε)] = 0. When this condi-
tion is obeyed, ε is an eigenvalue of H , with degeneracy equal
to the nullity of BL(ε).

For fixed BCs (fixed gr), the localized modes of the system
and their energies show asymptotic behavior in the thermody-
namic limit, L → ∞, which our method enables to charac-
terize analytically. A localized mode in the thermodynamic
limit has constituent generalized Bloch states with |z`| 6= 1.
This allows a simplification in the boundary matrix, as any L-
dependent terms in BL(ε) may be replaced by the appropriate
limit, given by limL→∞ zL` → 0 and limL→∞ z−L` → 0 for
|z`| < 1 and |z`| > 1, respectively. The existence check for
localized modes and their calculations is then carried out in
the same way as in the finite-L case.

An indicator of bulk-boundary correspondence.– The
boundary matrix defined in Eq. (7) points to a natural strat-
egy for constructing useful indicators of BB correspondence
based on combined information from both the bulk and the
boundary. In particular, for zero-energy modes, we propose

D ≡ log
(
det[B†∞(0)B∞(0)]

)
(8)

as one such indicator for an infinite system. We claim that the
existence of zero-energy edge modes manifests as a singular-
ity in the value of D. Consistent with this claim, we can rig-
orously prove that, under generic assumptions on the matrix
hr for r = R, the indicator D is always finite under periodic
BCs, irrespective of the bulk properties, see [24]. We remark
that other indicators are also in principle applicable to sys-
tems where translational invariance is broken (notably, based
on Pfaffians [25, 26]); even for clean systems as we consider,
however, their numerical evaluation becomes computationally
demanding for large system size.

Example.– As a first illustration, we revisit the paradig-
matic case of Kitaev’s p-wave TS chain with open BCs [25]
(see [24] for full detail). With reference to Eq. (2), this
nearest-neighbor model corresponds to R = 1 and 2 × 2 ma-
trices 2h0 = −µσz , h1 = −tσz + i∆σy , g1 ≡ 0, where
µ, t,∆ denote chemical potential, hopping, and superconduct-
ing pairing respectively, and σν , ν = x, y, z, are Pauli matri-
ces in the Nambu basis. For any ε, the characteristic equa-
tion for hB(z), Eq. (5), is quartic in z, which enables a
closed-form solution by radicals. The roots appear as two re-
ciprocal pairs, say,

{
z1, z

−1
1 , z2, z

−1
2

}
, where |z1| , |z2| ≤ 1.

For finite chain length L, the boundary equation is satisfied
if any of the two equalities f±(z1) = f±(z2) hold, where
f±(z) = [b(z)/(ε+ a(z))] [(1 + zL+1)/(1− zL+1)]±1, and
a(z) = µ + t(z + z−1), b(z) = ∆(z − z−1) [27]. In
the thermodynamic limit, the condition for zero-energy edge
modes simplifies to a(z1)/b(z1) = a(z2)/b(z2), which is
satisfied if and only if |µ| < |2t|. This parameter regime,
with phase boundary |µ| = |2t|, defines the topologically
non-trivial phase, hosting one Majorana mode per edge. If
µ2 < 4|t2 − ∆2|, (z1, z2) form a complex conjugate pair,
whereas for µ2 > 4|t2 − ∆2|, both z1 and z2 are real. The
self-adjoint Majorana mode localized on the left edge is then
given by γ ≡

∑∞
j=1(zj1 − z

j
2)(cj ∓ c†j), for µ2 ≶ 4|t2 −∆2|.

Josephson effect in two-band s-wave superconductors.–
The Kitaev chain in its topologically non-trivial phase is
known to exhibit a fractional Josephson effect [25], that is,
the Josephson current is 4π-periodic (more generally, 2πl-
periodic, with integer l > 1) as a function of the supercon-
ducting phase difference φ, and the many-body energy E(φ)
correspondingly switches parity [16]. Such an effect is re-
garded as both a hallmark and a leading observable signature
of topological superconductivity. The simplicity of the topo-
logical phase diagram in the Kitaev chain (either 0 or 1 Ma-
jorana mode per edge) allows for an unambiguous association
between a trivial (non-trivial) phase and a standard (uncon-
ventional) Josephson response; however, it is not a priori ob-
vious what to expect for more complex TSs, which may sup-
port phases with different numbers of Majorana modes – or,
respectively, different numbers of Majorana pairs per edge, if
time-reversal symmetry is preserved [4]. As we show next,
the existence of localized Majorana modes does not suffice, in
general, for the system to display fractional Josephson effect.

Consider the time-reversal-invariant two-band s-wave TS
wire introduced in [15]. Based on both the original numeri-
cal solution under open BCs and analysis of the appropriate
boundary matrix BL(0) [24], phases with zero, one, or two
pairs of (helical) Majorana modes localized on each boundary
may exist. Using a partial Berry-phase parity as a topological
indicator [15], only the phase hosting one pair of Majorana
modes is predicted to be topologically non-trivial. Thanks to
the present analytic approach, in particular the BB indicator
D defined in Eq. (8), we are now in a position to correlate this
prediction with the more physical – in principle experimen-
tally accessible – Josephson response of the system.

Our results are summarized in Fig. 1. As the insets show,
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FIG. 1. (Color online) Quasi-particle energies (solid black lines) and
BB indicator D [Eq. (8)] (dashed red line) vs. flux φ in a phase sup-
porting one (top), two (middle), and zero (bottom) pairs of Majorana
modes per edge. The grey shaded regions indicate bulk quasi-particle
energies. Insets: Many-body ground state energy E(φ). With refer-
ence to [24], the parameter values are: t = λ = ∆ = 1, µ = 0,
w = 0.2, ucd = 2 (top), ucd = 0.6 (middle), ucd = 3.7 (bottom).
In all calculations, lattice size L = 60 is used.

a fractional Josephson effect emerges only in the phase that is
predicted to be topologically non-trivial according to its par-
tial Berry-phase (odd) parity [24]. Some physical insight may
be gained by looking at the dependence of quasi-particle en-
ergy upon flux φ: as seen in the top panel, the 4π-periodicity
is associated with a crossing of a positive and a negative quasi-
particle energy level; this crossing occurs precisely at zero en-
ergy, indicating the presence of a pair of Majorana modes for
the value of flux at the crossing (solid black lines). In contrast,
in the trivial phase with two pairs of Majorana modes (middle
panel), the level crossing does not occur at zero energy, lead-
ing to the standard 2π-periodicity of E(φ), also found when
no Majorana mode is present (bottom panel). Since these
quasi-particle energy levels lie in the gap, they are localized,
and we can carry out the analysis in the thermodynamic limit
[24]. This reveals that, in the non-trivial phase, the bound-
ary equation is satisfied at φ = π, 3π, confirming the pres-
ence of exact zero energy modes at those values. Even more
interestingly, the proposed indicator D has been numerically
evaluated and plotted (dotted red lines): singularities clearly
emerge only in the topologically non-trivial phase, as claimed.

Discussion.– We investigated finite-range quadratic
fermionic Hamiltonians for which translational symme-
try is broken only by arbitrary BCs, and showed how a
Hamiltonian-dependent BB separation can make the property
of the system being “almost translationally symmetric"
quantitatively useful – leading to a natural generalization
of the Bloch theorem. Building on this, we described an

efficient diagonalization algorithm which, for D = 1, reduces
the problem of determining the full set of eigenvalues and
eigenvectors to one of finding the roots of the boundary
equation. Our algorithm successfully identifies the interplay
between bulk properties – captured by the generalized Bloch
states |z〉|u(ε, z)〉 – and BCs – captured by the boundary
matrix, BL(ε), of fixed dimension independent of L. Since
the calculation of L-dependent terms in BL(ε) (to fixed accu-
racy) may be effected in a single computation, the complexity
of our algorithm is O(1), in contrast to O[(dL)3] for generic
methods of evaluating the characteristic polynomial of H .

The advantages of our algorithm extend straightforwardly
to D-dimensional quadratic Hamiltonians, D > 1, if the stan-
dard procedure of imposing periodic BCs in D − 1 directions
is employed: in this way, the model reduces to a poly-sized
set of D = 1 lattices subject to arbitrary BCs, to which our al-
gorithm applies. We thus expect our approach to both have
immediate relevance to electronic structure calculations for
lattice systems, and to further elucidate gapless topological
superconductivity – notably, the emergence of Majorana flat
bands and anomalous BB correspondence uncovered in [28].
For more general BCs, e.g., two open directions, our model-
dependent procedure for BB separation and generalized Bloch
theorem go through with minor modifications. On the one
hand, this prompts the question of whether the concept of a
Wannier function may also be generalized for arbitrary BCs.
On the other hand, the procedure for incorporating BCs is
more involved, calling for separate investigation.

Beyond equilibrium scenarios, our approach should prove
advantageous to evaluate in closed form the unitary propaga-
tor exp(−iĤt) describing free evolution under arbitrary BCs,
and to diagonalize the Floquet propagator describing periodi-
cally driven fermionic systems [29]. Since our algorithm does
not exploit the Hermiticity of the Hamiltonian, a further direc-
tion of investigation is the application to open Fermi systems
obeying quadratic Lindblad master equations [30], with the
potential to shed light onto BB correspondence in engineered
topological phases far from equilibrium [31]. Lastly, despite
important differences at the single-particle level [18], our al-
gorithm applies to arbitrary BCs in quadratic bosonic systems.
This is an intriguing observation, since there is no BB corre-
spondence for bosons, yet a topological classification might
be possible in terms of generalized, symplectic Berry phases.

It is a pleasure to thank Alex Barnett for useful discussions
and input on computational complexity. Work at Dartmouth
was supported by the NSF through Grant No. PHY-1066293
and the Constance and Walter Burke Special Projects Fund in
Quantum Information Science.
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