
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological Septet Pairing with Spin-3/2 Fermions: High-
Partial-Wave Channel Counterpart of the ^{3}He-B Phase

Wang Yang, Yi Li, and Congjun Wu
Phys. Rev. Lett. 117, 075301 — Published 10 August 2016

DOI: 10.1103/PhysRevLett.117.075301

http://dx.doi.org/10.1103/PhysRevLett.117.075301


Topological septet pairing with spin-3
2
fermions – high partial-wave channel

counterpart of the 3He-B phase

Wang Yang,1 Yi Li,2 and Congjun Wu1

1Department of Physics, University of California, San Diego, California 92093, USA
2Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

We systematically generalize the exotic 3He-B phase, which not only exhibits unconventional
symmetry but is also isotropic and topologically non-trivial, to arbitrary partial-wave channels
with multi-component fermions. The concrete example with four-component fermions is illustrated
including the isotropic f , p and d-wave pairings in the spin septet, triplet, and quintet channels,
respectively. The odd partial-wave channel pairings are topologically non-trivial, while pairings in
even partial-wave channels are topologically trivial. The topological index reaches the largest value
of N2 in the p-wave channel (N is half of the fermion component number). The surface spectra
exhibit multiple linear and even high order Dirac cones. Applications to multi-orbital condensed
matter systems and multi-component ultra-cold large spin fermion systems are discussed.

PACS numbers: 74.20.Rp., 67.30.H-, 73.20.At, 74.20.Mn

Superconductivity and paired superfluidity of neu-
tral fermions possessing unconventional symmetries are
among the central topics of condensed matter physics.
If Cooper pairs formed by spin- 12 fermions carry non-
zero spin, their orbital symmetries are usually in the
odd partial-wave channels, except in the case of odd-
frequency pairings [1, 2]. The p-wave paired superfluidity
[3, 4] includes the 3He A-phase exhibiting point nodes [5],
the fully gapped B-phase [6], and the recently reported
polar state with linear nodes [7, 8]. The p-wave supercon-
ductivity has also been extensively investigated in heavy
fermion systems including UGe2, URhGe, UCoGe [9].
The p-wave superfluid 3He and superconductors exhibit
rich topological structures of vortices and spin textures
under rotations or in external magnetic fields, respec-
tively [10, 11]. In addition, experimental signatures of
the possible nodal f -wave superconductivity have also
been reported in UPt3 [12, 13].

Among unconventional pairing phases, the pairing
structure of the 3He-B phase is distinct. In spite of
its non-s-wave symmetry and non-trivial spin configu-
ration, the overall pairing structure remains isotropic:
It is invariant under the combined spatial and spin
rotations carrying total angular momentum zero. Its
shows the relative spin-orbit symmetry breaking from
SOL(3)⊗ SOS(3) to SOJ (3) [3] where L, S, and J rep-
resent the orbital, spin, and total angular momentum,
respectively. The relative spin-orbit symmetry-breaking
has also been studied in the context of Pomeranchuk in-
stability termed as unconventional magnetism leading to
the dynamic generation of spin-orbit coupling [14, 15].

Furthermore, the 3He-B phase possesses non-trivial
topological properties [16–18]. Topological states of mat-
ter have become a major research focus since the dis-
covery of the integer quantum Hall effect [19–21]. Re-
cently, the study of topological band structures has ex-
tended from time-reversal (TR) breaking systems to TR
invariant systems [22–24], from two to three dimensions

[17, 25, 26], and from insulators to superconductors [16–
18, 27–30]. The 3He-B phase is a 3D TR invariant topo-
logical Cooper pairing state. Its bulk Bogoliubov spectra
are analogous to the 3D gapped Dirac fermions belonging
to the DIII class characterized by an integer-valued in-
dex [17]. The non-trivial bulk topology gives rise to the
gapless surface Dirac spectra of the mid-gap Andreev-
Majoranamodes [31]. Evidence of these low energy states
has been reported in recent experiments [32].

Because the electron Cooper pair can only be either
spin singlet or triplet, the p-wave 3He-B phase looks the
only choice of the unconventional 3D isotropic pairing
state. In this article, we will show that actually there
are much richer possibilities of this exotic class of pairing
in all the partial-wave channels of L ≥ 1. We consider
multi-component fermions in both orbital-active solid
state systems and ultra-cold atomic systems with large
spin alkali and alkaline-earth fermions, both of which
have recently attracted a great deal of attention [33–41].
For simplicity, below we introduce an effective spin s to
describe the multi-component fermion systems with the
component number expressed as 2N = 2s+1 ≥ 4. Com-
pared with the 2-component case, their Cooper pair spin
structures are greatly enriched [34, 42]. For example,
the 4-component spin- 32 systems can support the f -wave
septet, p-wave triplet, and d-wave quintet pairings, all of
which are fully gapped and rotationally invariant. Never-
theless, only the odd partial-wave channel ones, i.e., the p
and f -wave pairings are topologically non-trivial. Their
topological properties are analyzed both from calculating
the bulk indices and surface Dirac cones of the Andreev-
Majorana modes. For the p-wave case, the topological
indices from all the helicity channels add up leading to a
large value of N2. Correspondingly the surface spectra
exhibit the coexistence of 2D Dirac cones of all the orders
from 1 to 2N − 1.

We begin with an f -wave spin septet Cooper pairing
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Hamiltonian in a 3D isotropic system of spin- 32 fermions

H =
∑

~k

ǫ~kc
†
α(
~k)cα(~k)−

g

V0

∑

~k,~k′,m,ν

P †
m,ν(

~k)Pm,ν(~k
′), (1)

in which ǫ~k = ~
2k2

2m − µ and µ is the chemical potential.
α = ± 3

2 ,± 1
2 is the spin index, g is the pairing interaction

strength, and V0 is the system volume. The pairing oper-
ator is defined as P †

m,ν(
~k) = c†α(~k)Y3m(k̂)[S3νR]αβc

†
β(−~k)

where k̂ = ~k/k, Y3m(k̂)’s with −3 ≤ m ≤ 3 are the 3rd
order spherical harmonic functions, and S3ν with −3 ≤
ν ≤ 3 are the rank-3 spherical tensors based on the spin
operator ~S in the spin 3

2 -representation, where ν is the

eigenvalue of Sz. For later convenience, Y3m(k̂) are nor-

malized according to
∑

m |Y3m(k̂)|2 = 1. R is the charge

conjugation matrix defined as Rαβ = (−)α+
1

2 δα,−β sat-

isfying R~STR−1 = −~S such that Rαβc
†
β transforms in

the same way under rotation as cα does. The expres-
sions for spherical harmonic functions and spin tensors
are presented in Supplemental Material (SM) I.
After the mean-field decomposition, Eq. 1 becomes

HMF

V
=

1

V

′
∑

~k

Ψ†(~k)H(~k)Ψ(~k) + g
∑

m,ν

∆∗
m,ν∆m,ν , (2)

in which ~k is summed over half of momentum space;
Ψ(~k) = (c~k,α, c

†
−~k,α

)T is the Nambu spinor; the order pa-

rameter ∆m,ν is defined through the self-consistent equa-
tion as

∆m,ν =
g

V

∑

~k

〈G|cγ(−~k)Y ∗
3m(~k)R†S3ν,†cδ(~k)|G〉 (3)

with 〈G|...|G〉 meaning the ground state average. The

matrix kernel H(~k) in Eq. 2 is expressed as

H(~k) = ǫ(~k)τ3 ⊗ I4×4 + ∆̂(~k)τ+ + ∆̂(−~k)τ−, (4)

where τ3 and τ± = 1
2 (τ1 ± iτ2) are the Pauli matrices

acting in the Nambu space. ∆̂(~k) is defined in the matrix
form in spin space as

∆̂(~k) =
∑

ν

(S3νR)d∗,ν(~k), (5)

where d∗,ν(~k) = ∆m,νY3m(k̂) and is dubbed as the d-
tensor in analogy to the d-vector in 3He. The usual d-
vector is represented in its three Cartesian components,
while here, the d-tensor is a rank-3 complex spherical
tensor.
We consider the isotropic pairing with total angular

momentum J = 0, which is a generalization of the p-
wave 3He-B phase. Similarly, it is fully gapped, and
thus conceivably energetically favorable within the mean-
field theory. Its dν(~k) can be parametrized as dν(~k) =

FIG. 1: Pictorial representations of the pairing matrices
over the Fermi surfaces of (a) the isotropic f -wave septet
pairing and (b) the isotropic p-wave triplet pairing with
spin- 3

2
fermions. Intuitively, the f -wave matrix kernels

U(k̂)S30U†(k̂) and the p-wave ones U(k̂)S10U†(k̂) for each

wavevector ~k are depicted in their orbital counterpart har-
monic functions in (a) and (b), respectively.

cf∆f (
k
kf
)3Y3ν(k̂), where cf is an overall normalization

factor given in SM II, ∆f is the complex gap magnitude,
or, equivalently,

∆̂(~k) = ∆f (
k

kf
)3Kf(k̂)R (6)

in which Kf = cfU(k̂)S30U †(k̂); U(k̂) rotates the z-

axis to k̂ as defined in the following gauge U(k̂) =
e−iφksze−iθksy in which θk and φk are polar and az-
imuthal angles of k̂, respectively. The explicit form
of ∆̂(k̂) and the corresponding spontaneous symmetry
breaking pattern are presented in SM II and III, respec-
tively.
With the help of the helicity operator h(k̂) = k̂ · ~S,

Kf(k̂) can be further expressed in an explicitly rotational
invariant form as

Kf (k̂) = −5

2
h3(k̂) +

41

8
h(k̂), (7)

which is diagonalized as U †(~k)Kf (k̂)U(k̂) = (− 5
2S

3
z +

41
8 Sz). For a helicity eigenstate with the eigenvalue

λ, the corresponding eigenvalue ξλ of Kf (k̂) reads
ξλ = − 3

4 ,
9
4 ,− 9

4 ,
3
4 for λ = 3

2 ,
1
2 ,− 1

2 ,− 3
2 , respectively.

The Bogoliubov quasi-particle spectra are Eλ(~k) =
√

ǫ2(~k) + |∆f |2( k
kf
)6ξ2λ satisfying Eλ(~k) = E−λ(~k) due

to the parity symmetry.
Next we study the pairing topological structure. The

pairing Hamiltonian Eq. 4 in the Bogoliubov-de Gennes
(B-deG) formalism possesses the particle-hole symmetry

CpH(~k)C−1
p = −H∗(−~k) with Cp = τ1 ⊗ I4. Further-

more, the isotropic pairing state described by Eq. 6
is TR invariant satisfying CTH(~k)C−1

T = H∗(−~k) with
CT = I2 ⊗R, and thus it belongs to the DIII class. The
associated topological index is integer-valued which will
be calculated following the method in Ref. [30]. H(~k) is
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FIG. 2: The gapless surface spectra for the isotropic f -wave
septet pairing in (a) and for the isotropic p-wave triplet pair-
ing in (b) with spin- 3

2
fermions.

transformed with only two off-diagonal blocks as ǫ(~k)τ1+

∆f (
k
kf
)3K(k̂)τ2. The singular-value-decomposition to

its up-right block yields U(k̂)L(k)Λ(k)U †(k̂), in which
L(k) and Λ(k) are two diagonal matrices only depen-
dent on the magnitude of k defined as Lλλ(k) = Eλ(k)
and Λλλ(k) = eiθλ(k), respectively. The angles satisfy

tan θλ(~k) = −∆fξλ
ǫ~k

( k
kf
)3 and for simplicity ∆f is set as

positive. The k3-dependence of the pairing amplitude is
regularized: Beyond a cutoff kc, ∆f vanishes.
The topological index is calculated through the SU(4)

matrix Q~k
= U(k̂)Λ(k)U †(k̂) as

Nw =
1

24π2

∫

d3~kǫijlTr[Q†
~k
∂iQ~k

Q†
~k
∂jQ~k

Q†
~k
∂lQ~k

], (8)

which is integer-valued characterizing the homotopic
class of the mapping i.e., π3(SU(4)) = Z. Neverthe-
less, Nw is only well-defined up to a sign: After changing
∆f → −∆f , Nw flips the sign. As shown in SM IV, at
µ > 0 Nw is evaluated as

Nw =
∑

λ=± 3

2
,± 1

2

λ sgn(ξλ). (9)

Its dependence on sgn(ξλ) is because θλ(~k) varies from
0 → π

2 → π at ξλ > 0 but from π → π
2 → 0 as k

varies from 0 to kf to +∞. A similar form of Eq. 9 was
obtained in Ref. [30] in which the Fermi surface Chern
number plays the role of λ in Eq. 9. For two helicity
pairs of λ = ± 3

2 and λ = ± 1
2 , their contributions are

with opposite signs, and thus Nw = 2.
The non-trivial bulk topology gives rise to gapless sur-

face Dirac cones. Because of the pairing isotropy, with-
out loss of generality, an open planar boundary is chosen
at z = 0 with µ(z) = ǫf > 0 at z < 0 and −∞ at

z > 0. The mean-field Hamiltonian becomes H(~k‖, z) in

which ~k‖ = (kx, ky) remains conserved while the transla-
tion symmetry along the z-axis is broken. The symmetry
on the boundary is Cv∞ including the uni-axial rotation
around the z-axis and the reflection with respect to any

vertical plane. Cv∞ is also the little group symmetry at
~k‖ = 0, then the four zero Andreev-Majorana modes at
~k‖ = 0 are sz eigenstates denoted as |0α,f 〉. The associ-

ated creation operators γ†α are solved as

γ†α =

∫ 0

−∞
dz [ ei(

ϕ
2
+π

4
)c†α(~k‖ = 0, z)

+ e−i(ϕ
2
+π

4
)c−α(~k‖ = 0, z)]uα(z), (10)

where ϕ is the phase of ∆; uf,α(z) is the zero mode wave-
function exponentially decaying along the z-axis, and its
expression is presented in SM V.
The surface zero modes |0α,f 〉 at ~k‖ = 0 possess an

important property that the gapped bulk modes do not
have: They are chiral eigen-modes satisfying Cch|0α,f〉 =
(−)να |0α,f 〉 with να = 0 for α = 3

2 ,− 1
2 and να = 1

for α = 1
2 ,− 3

2 , respectively, in which the chiral operator
is defined as Cch = iCpCT = iτ1 ⊗ R. The mean-field

Hamiltonian H(~k‖, z) is in the DIII class satisfying the
particle-hole and TR symmetries, and it transforms as
CchH(~k‖, z)C

−1
ch = −H(~k‖, z). Thus Cch is a symmetry

only for zero modes. For a nonzero mode |ψn〉 and its
chiral partner |ψn̄〉 = Cch|ψn〉, their energies are oppo-
site to each other, i.e., ǫn̄ = −ǫn. If a perturbation δH
remains in the DIII class, then CchδHC

−1
ch = −δH . δH

can only mix two zero modes with opposite chiral indices
because 〈0α,f |δH |0β,f〉 = (−)να+νβ+1〈0α,f |δH |0β,f〉, and
it is nonzero only if να 6= νβ .

As moving away from ~k‖ = 0, the zero modes evolve
to the midgap states developing energy dispersions. At
k‖ ≪ kf , these midgap states can be solved by using the
k · p perturbation theory within the subspace spanned
by the zero modes |0α,f 〉 at ~k‖ = 0. By setting δH =

H(~k‖, z)−H(0, z), the effective Hamiltonian to the linear
order of k‖ is

Hf
mid(

~k‖) =
9∆f

4kf









0 −ik− 0 O(k3−)
ik+ 0 −2ik− 0
0 2ik+ 0 −ik−

O(k3+) 0 ik+ 0









, (11)

where k± = kx ± iky. The matrix elements in the same
chiral sector are exactly zero, and the elements at the
order of O(k3±) are neglected. The solutions consist
two sets of 2D surface Dirac cone spectra represented

by E
a(b)
± (~k‖) = ±va(b)k‖. The velocities are solved as

va(b) = 9
4
|∆f |
kf

(
√
2 ± 1). We also develop a systematic

method beyond the k ·p theory to solve the midgap spec-
tra for all the range of k‖ as presented in SM VIII, and the
results are plotted in Fig. 2 (a). In addition to the Dirac
cones, there also exists an additional zero energy ring not

captured by Eq. 11, which is located at k/kf =
√
3
2 as

analyzed in SM V.
Now we move to other unconventional isotropic pair-

ings of spin- 32 fermions in the p and d-wave channels.
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The p-wave triplet one is topologically non-trivial, and
the analysis can be performed in the same way as above.
The pairing matrix is ∆̂p(~k) =

∑

ν=0,±1(S
1νR)d∗,νp (~k) =

∆p
k
kf
Kp(k̂)R, where S

1ν is the rank-1 spin tensor, dνp =

∆p(
k
kf
)Y1ν(k̂), and Kp(k̂) = k̂ · ~S is just the helicity op-

erator. The quasi-particle spectra are fully gapped as

Eλ(~k) =
√

ǫ2(~k) + |∆p|2( k
kf
)2λ2, and the topological in-

dex of this pairing can be evaluated based on Eq. 9 by
replacing the eigenvalues of Kf(k̂) with those of Kp(k̂).
The contributions from two helicity pairs of λ = ± 3

2 and
± 1

2 add up leading to a high value Nw = 4. In compar-
ison, the topological index of the 3He-B phase is only 1,
and thus their topological sectors are different in spite of
the same pairing symmetry.

The surface spectra of the isotropic p-wave pairing
with spin- 32 fermions are interesting: They exhibit a cu-
bic Dirac cone in addition to a linear one. Consider the
same planar boundary configuration as before, similarly
for each spin component α there exists one zero mode at
~k‖ = 0 labeled by |0α,p〉. Again we perform the k ·p anal-
ysis at k‖ ≪ kf in the subspace spanned by |0α,p〉 with

respect to δH = H(~k‖, z) − H(0, z). The chiral eigen-
value of |0α,p〉 is (−)να = sgn(α), which leads to a dif-
ferent structure of effective Hamiltonian from that of the
f -wave one. Only |0± 1

2
,p〉 can be directly coupled by δH ,

which leads to a linear Dirac cone. In contrast, the pair
of states |0± 3

2
,p〉 are not directly coupled, rather |0 3

2
,p〉

and |0− 1

2
,p〉 are coupled through the 2nd order perturba-

tion theory, and so do |0− 3

2
,p〉 and |0 1

2
,p〉. Consequently,

|0± 3

2
,p〉 are coupled at the order of (δH)3 developing a cu-

bic Dirac cone as shown in SM VII. The above analysis is
confirmed by the solution based on the non-perturbative
method in SM VIII as plotted in Fig. 2 (b).

In contrast, the d-wave spin quintet isotropic pairing
of spin- 32 fermions are topologically trivial. By imitat-

ing the analyses above, we replace Kf (k̂) with Kd(k̂) =

2(k̂ · ~S)2 − 5
2I4. Different from the kernels Kp and Kf

in odd partial-wave channels, Kd’s eigenvalues are even
with respect to the helicity index, i.e., ξdλ = ξd−λ, such
that Nw vanishes. This result agrees with that 3D TR
invariant topological superconductors should be parity
odd as shown in Ref. [43]. The explicit calculation of the
surface spectra in SM VII confirms this point showing
the absence of zero modes.

The above analysis can be straightforwardly applied
to multi-component fermion systems with a general spin
value s = N− 1

2 . The spin-tensors at the order of l are de-
noted as Slm with 0 ≤ l ≤ 2S and −l ≤ m ≤ l. For each
partial-wave channel 0 ≤ l ≤ 2S, there exists an isotropic
pairing with the pairing matrix ∆̂(k̂) = ∆l(

k
kf
)lKl(k̂)R

in which Kl = U(k̂)Sl0U †(k̂), whose topological index
Nw(l) is determined by the sign pattern of the elements
of the diagonal matrix Sl0. For even and odd values of

l, Sl0
αα = ±Sl0

−α−α, respectively, and thus N l
w vanishes

when l is even, while for odd values of l,

Nw(l) =
∑

λ>0

2λ sgn(Sl0
λλ), (12)

in which Sl0
αα = (−)α+

1

2 〈Sα, S−α|SS; l0〉 up to an overall
factor. The largest value of Nw is reached for the p-wave
case: Since S10 ∝ Sz, contributions from all the com-
ponents add together leading to Nw = N2. The 3He-B
phase of spin- 12 fermions and the isotropic p-wave pairing
with spin- 32 fermions are two examples. As for the sur-

face zero modes |0α,p〉 at ~k‖ = 0, their chiral indices equal

sgn(α). As a result, similar to the spin- 32 case, when
performing the k · p analysis for midgap states within
the subspace spanned by |0α,p〉, only |0± 1

2
,p〉 are directly

coupled leading to a linear Dirac cone, and other pairs
of |0±α,p〉 are indirectly coupled at the order of (δH)2α

leading to high order Dirac cones.
Multi-component fermion systems are not rare in na-

ture. In solid state systems, many materials are orbital-
active including semiconductors, transition metal oxides,
and heavy fermion systems. Due to spin-orbit coupling,
their band structures are denoted by electron total an-
gular momentum j and in many situations j > 1

2 . For
example, in the hole-doped semiconductors, the valence
band carries j = 3

2 as described by the Luttinger model
[44]. Superconductivity has been discovered in these sys-
tems including hole-doped diamond and Germanium [45–
47]. Although in these materials, the Cooper pairings are
mostly of the conventional s-wave symmetry arising from
the electron-phonon interaction, it is natural to further
consider unconventional pairing states in systems with
similar band structures but stronger correlation effects.
The p-wave pairing based on the Luttinger model has
been studied in Ref. [40]. In ultra-cold atom systems,
many alkali and alkaline-earth fermions often carry large
hyperfine spin values F > 1

2 , and thus their Cooper
pair spin structures are enriched taking values from 0
to 2F not just singlet and triplet as in the spin- 12 case
[34, 36, 42].
In multi-component solid state systems, there often

exists spin-orbit coupling. For example, the Luttinger
model describing hole-doped semi-conductors [44], con-

tains an isotropic spin-orbit coupling Hso = γ2k
2(k̂ · ~S)2.

Since Hso is diagonalized in the helicity eigenbasis, we
only need to update the kinetic energy with ǫkλ =
ǫk + γk2λ2 in the mean-field analysis, which satisfies
ǫkλ = ǫk,−λ, and the pairing structure described by Eq.
6 is not affected. The topological properties are the same
as analyzed before because the index formula Eq. 9 re-
mains valid and the surface mid-gap state calculation
can be performed qualitatively similarly. Nevertheless,
the symmetry breaking pattern is changed. The relative
spin-orbit symmetry is already explicitly broken by the
Hso. The spin-orbit coupled Goldstone modes in 3He-
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B become gapped pseudo-Goldstone modes with the gap
proportional to the spin-orbit coupling strength γ2.
In summary, we have found that multi-component

fermion systems can support a class of exotic isotropic
pairing states analogous to the 3He-B phase with uncon-
ventional pairing symmetries and non-trivial topological
structures. High-rank spin tensors are entangled with
orbital partial-waves at the same order to form isotropic
gap functions. For the spin- 32 case, the odd partial-wave
channel pairings carry topological indices 2 and 4 for
the f and p-wave pairings, respectively, while the d-wave
channel pairing is topologically trivial. The surface Dirac
cones of mid-gap modes are solved analytically which ex-
hibit two linear Dirac cones in the f -wave case, and the
coexistence of linear and cubic Dirac cones in the p-wave
case. Generalizations to systems with even more fermion
components can be performed straightforwardly. This
work provides an important guidance to search for novel
non-trivial topological pairing states in both condensed
matter and ultra-cold atom systems.
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superconductors [48].
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