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Many topological phenomena first proposed and observed in the context of electrons in solids
have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate
that non-Abelian Berry phases can arise when coherent states of light are injected into “topological
guided modes” in specially-fabricated photonic waveguide arrays. These modes are photonic ana-
logues of topological zero modes in electronic systems. Light traveling inside spatially well-separated
topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which
depend on the order in which the guided beams are wound around one another. Notably, these
effects survive the limit of large photon occupation, and can thus also be understood as wave phe-
nomena arising directly from Maxwell’s equations, without resorting to the quantization of light.
We propose an optical interference experiment as a direct probe of this non-Abelian braiding of
light.

Manifestations of topology in physical systems, specif-
ically in the form of so-called geometric phases, [1, 2]
have risen to prominence over the last three decades.
Geometric phases were shown by M.V. Berry to arise
in quantum systems under cyclic adiabatic variation of
parameters, [2] but it was later understood [3] that this
phase had been discovered thirty years earlier in the
context of classical optics by S. Pancharatnam. [1] The
close analogy between quantum mechanics and classi-
cal optics has remained over the years, and many of
the striking topological states of matter associated with
electrons in solids, such as topological insulators and
semimetals, [4] have recently found counterparts in pho-
tonic [5–13] and acoustic [14–19] systems. The present
work aims to further highlight and deepen the connec-
tion between topological phenomena in solids and in
classical wave mechanics by demonstrating a new facet
to this correspondence. We demonstrate the existence of
a classical analogue of the non-Abelian Berry phase [20]
that arises from “braiding” topological defects in solids.

One route to non-Abelian Berry phases in electronic
systems lies in the remarkable physics of zero modes.
As was pointed out in pioneering work by R. Jackiw
with C. Rebbi [21] and P. Rossi, [22] localized zero-
energy fermionic states can bind to topological defects
in an order parameter, such as kinks in one dimen-
sion and vortices in two dimensions. In systems where
electric charge is a good quantum number, these zero
modes carry charges that are fractions of the “funda-
mental” electron charge. [21, 23, 24] In chiral super-
conductors, where charge conservation is broken, these
localized modes are Majorana bound states with non-
Abelian statistics. [22, 25–27] At the mean-field level,
where interactions between electrons are neglected, this
non-Abelian statistcs can be understood in terms of
the accumulation of non-Abelian Berry phases as de-
fects are adiabatically exchanged with one another. [28]
The non-Abelian nature of this process manifests itself

in dependence of these phases on the order in which
the defects are interchanged, in contrast to the usual
“Abelian” Berry phase.

In this paper, we propose a novel means of realizing
topological zero modes in photonic, rather than elec-
tronic, systems, and demonstrating their non-Abelian
braiding directly. The proposed realization consists of
non-interacting photons propagating in the non-trivial
background of a photonic lattice with topological de-
fects whose positions are controllable. Light channeled
into “topological guided modes” localized at these de-
fects can be braided, leading to the accumulation of non-
Abelian phases that depend on the order in which the
braids occur. We demonstrate that this effect manifests
itself at both the quantum and classical levels, owing to
the linearity of the equations of motion for noninteract-
ing light.

The zero modes we propose to realize are photonic
analogues of Kekulé zero modes in graphene, [24] which
are bound to vortices in the complex order parameter
∆(r) describing a dimerization pattern in the hexagonal
lattice (Fig. 1). The translation between electrons and
photons is achieved by replacing the sites of the lattice
with waveguides embedded in a bulk optical medium
(e.g. fused silica), [29] which are extended in the z di-
rection and whose x-y positions mimic the 2D posi-
tions of the carbon atoms in the distorted graphene lat-
tice. The wave equation for the paraxial propagation
of light in such a waveguide array maps directly onto
the time-dependent Schrödinger equation (SE), where
the time coordinate t in the SE is replaced by the coor-
dinate z along the direction of light propagation. This
wave equation can be further mapped, using coupled
mode theory, [30] to a linear differential equation that
is in one-to-one correspondence with the noninteract-
ing tight-binding model of the electronic system. The
waveguides themselves can therefore be thought of as
the world lines of the carbon atoms, with straight waveg-
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FIG. 1: a) Uniform Kekulé distortion in a hexagonal waveg-
uide lattice at a slice of constant z. The faint circles repre-
sent the original hexagonal lattice, while darker circles repre-
sent the distorted lattice. Sublattice A is colored red, while
sublattice B is colored blue. The overlaid vector field rep-
resents the magnitude and direction of the order parameter
∆(r). The background is an image of a low-lying eigenmode
of Eq. (1). The intensity pattern represents the amplitude of
the electric field in each waveguide. b) Waveguide lattice in
the presence of a vortex in the Kekulé pattern, with an over-
laid order-parameter vector field showing circulation around
the vortex core. The background is an intensity plot of the
localized zero-mode wavefunction. We have chosen a vortex
profile in which only sublattice A is displaced.

uides corresponding to a lattice that is static in time.
Waveguide arrays of this type have been realized,

written into bulk materials with exquisite precision us-
ing femtosecond lasers, [31] (see Ref. 29 for a review).
They have been used to mimic graphene and other elec-
tronic systems with both static lattices [5, 32–34] and
ones that change as a function of time. [10, 11] The
experimental protocol suggested here hinges on this ca-
pability to execute a braiding procedure in which three
vortices are wound around one another. As we show
below, a protocol can be chosen that reveals the non-
Abelian nature of the braiding directly via interference
between different braiding patterns.

Our starting point is the coupled-mode equation for
paraxial light propagation through the waveguide array,

i ∂z ψr(z) =

3∑
j=1

Hr,r±sj ψr±sj (z). (1)

Here, the vector r is defined on a hexagonal lattice di-
vided into two triangular sublattices that we call A and
B. The vectors +sj (j=1,2,3) connect the point r in
sublattice A to its three nearest neighbors in sublattice
B, located a distance a away, and −sj connect points in
B to their neighbors in A. For simplicity, we assume the
light in the array to be monochromatic, so that Eq. (1) is
frequency-independent. Eq. (1) is formally identical to
a noninteracting tight-binding model in which the time
coordinate t has been replaced by the longitudinal co-
ordinate z. Its solutions can be decomposed into eigen-
modes ψν,r(z) = ψν,r e

−iκνz, where ν = 0, . . . , 2N − 1,

with N the number of unit cells in the waveguide array,
labels the “energy eigenvalues” κν . The “wavefunction”
ψr(z) in Eq. (1) is related to the amplitude of the local
electric field Er(z, t) on the “site” r. It is useful to work
with the quantized electric field operator[35]

Êr(z, t) =
∑
ν

ψν,r e
i[(kω−κν)z−ωt] b̂ν n + H.c. (2)

where n is a unit vector in the x-y plane describing the
polarization of the field and kω satisfies the dispersion
relation of a single waveguide. The ladder operators
b̂ν satisfy the bosonic commutation relations [b̂ν , b̂

†
ν′ ] =

δν,ν′ . [See Supplemental Material (SM) for details on
the quantization procedure.]

The “Hamiltonian” in Eq. (1) depends exponen-
tially on distances between nearest-neighbor waveg-
uides (we neglect longer-range couplings for the mo-
ment). We take Hr,r+sj = −t − δtr,j , where δtr,j =
∆(r) eiK+·sj e2iK+·r/2 + c.c. (we denote by K± the lo-
cations of the two inequivalent Dirac points, at oppo-
site corners of the hexagonal Brillouin zone). Here, the
parameter t describes the evanescent couplings of the
waveguides, and the position-dependent function δtr,j
describes modulations of these couplings due to dis-
placements of the waveguides from their original x-y
positions. The complex-valued Kekulé order parame-
ter ∆(r) controls the distortion of the lattice. [24] A
vortex in ∆(r) is a defect in this distortion pattern,
but not the lattice itself. The order parameter in the
presence of a single vortex centered at the origin reads
∆(r) = ∆0(r) ei(α−θ) in polar coordinates r = (r, θ).
Here, ∆0(r) = ∆ tanh(r/`0) describes the spatial pro-
file of the vortex, which has a core radius `0, and α is
the phase of the order parameter.

The zero mode in the presence of this vortex profile
can be found by setting the left-hand side of Eq. (1)
to zero and solving for ψr. The zero-mode solution is
tightly localized near the core of the vortex, with a size
of order 1/∆, and has support on sublattice A only [see
Fig. 1(B)]. [If we send θ → −θ in ∆(r), the zero mode
has support on sublattice B instead. [24]] This means
that light propagating in the zero mode travels as if con-
fined to an “optical fiber” located at the vortex core, al-
beit with evanescent decay into neighboring waveguides
in the same sublattice. However, the zero mode differs
crucially from a mode in an optical fiber, both because
it takes the distortion of an entire waveguide lattice to
create, and because it depends on the topological nature
of this distortion. These “topological guided modes” are
responsible for the non-Abelian effects described below.

The above discussion neglects the presence of various
lattice effects that can shift the zero mode eigenvalue to
a finite momentum. In principle, this makes possible the
accumulation of path-dependent (i.e. non-topological)
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dynamical phases during braiding. However, as we show
in detail in the SM, these effects can be neglected to
resonable precision without fine-tuning. There, we es-
timate (conservatively) that we can perform thousands
of braids before the effects of dynamical phases begin to
manifest themselves.

To facilitate our discussion of the non-Abelian braid-
ing of vortices like the one above, we work in the con-
tinuum limit, where the analytical form of the vortex
wavefunction is known. (Exact diagonalization calcu-
lations corroborating these results are reviewed in the
SM.) On length scales much longer than a, the operator
that annihilates a photon in the zero mode is

b̂0 =

∫
dr

[
u(r) b̂+(r) + u∗(r) b̂−(r)

]
, (3)

where b̂±(r) annihilate a photon at the Dirac points
K±. (These operators are assumed to be normalized

such that the canonical commutation relation [b̂0, b̂
†
0] =

1 holds.) The function u(r) ≡ u(r) is given, up to nor-
malization, by [24]

u(r) = ei(α/2+π/4) e−
∫ r
0

dr′ ∆0(r′). (4)

Note that the zero mode amplitude u(r) is double-
valued : when α, the phase of the order parameter ∆(r),
changes by 2π, u(r) acquires a minus sign. The origin
of this double-valuedness lies in the fact that u(r) is
a solution to the Dirac equation, and therefore must
transform as a spinor under changes in α.

The quantum states created by b̂†0 can be connected
to the macroscopic state of light in the waveguide array
by defining the coherent state

|λ〉 = e−|λ|
2/2 eλb̂

†
0 |0〉 (5)

with mean photon number 〈b̂†0b̂0〉 = |λ|2. These states
provide a faithful description of the electric field in the
waveguide array in the large-|λ| limit when the input
light is a coherent, monochromatic laser spot centered
on the vortex core. In this case, the contribution of the
photonic zero mode to the classical electric field is given
by [c.f. Eq. (2)]

E0,r(z, t) = λu(r) ei(K+·r+kω z−ωt) n + c.c., (6)

with u(r) given in Eq. (4) and λ defined by Eq. (5). The
ease with which one can translate between the quantum
and classical descriptions of the waveguide array owes
to the fact that photons in the array are noninteracting.
Indeed, an alternative way of deriving Eq. (6) is to solve
Maxwell’s equations directly in the presence of a vortex.

Let us now study the braiding of zero modes in an
infinite system with v vortices at z-dependent positions

Ri(z) (i = 1, . . . , v). The order parameter in the pres-
ence of this vortex configuration is given by

∆(r) = ∆

n∏
j=1

tanh(|r −Rj |/`0) ei[αj−arg(r−Rj)] , (7)

and the zero-mode Hilbert space is spanned by the op-
erators b̂†0,i. A clockwise adiabatic exchange of vortices
i and i + 1 is implemented by winding the vortex-core
coordinates Ri(z) and Ri+1(z) around one another as
functions of increasing z (see, e.g., the braids in Fig. 2).
In the SM, we show that the nontrivial nature of this
winding process stems from the double-valuedness of
u(r) under α → α − 2π. (We verified this statement
for the zero-mode wavefunction on the lattice via a nu-
merical tight-binding calculation, as we describe in the
SM.) The effect of this exchange, up to a gauge choice,

is to map b̂†0,i → b̂†0,i+1 and b̂†0,i+1 → −b̂
†
0,i while leav-

ing all other vortex operators unchanged, similarly to
the case of Majorana [26] and Dirac zero modes [36] in
electronic systems. The operator that implements this
exchange is

τ̂i = eπ (b̂†0,i+1b̂0,i−b̂
†
0,ib̂0,i+1)/2. (8)

One verifies by direct calculation that these operators
satisfy [τ̂i, τ̂j ] = 0 for |i− j| > 1 and τ̂iτ̂j τ̂i = τ̂j τ̂iτ̂j for
|i− j| = 1, and therefore form a unitary representation
of Bv, the braid group on v strands. [37] The action of
these generators on a state

|n1, . . . , nv〉 =

v∏
i=1

(b̂†0,i)
ni

√
ni!
|0〉, (9)

representing a system with v vortices, each with a fixed
number of photons, is given by

τ̂i |. . . , ni, ni+1, . . . 〉=(−1)ni+1 |. . . , ni+1, ni, . . . 〉. (10)

We now explain the consequences of the above phase
factor, which arises purely from braiding the vortices.
Consider the case of two vortices, and the operation of
winding one around the other, which restores them to
their initial locations. We begin by considering i) an
example where this phase factor does not lead to uni-
tary operations on a multi-dimensional space of degen-
erate states, and then turn to ii) an example where it
does. For case i), consider any eigenstate of occupation
number, |n1, n2〉, which upon winding goes to the state
(−1)n1+n2 |n1, n2〉; clearly, the initial and final states are
equal up to a phase, and the braiding operation acts on
a one-dimensional space only. In contrast, consider case
ii), where we take an initial state that is not an eigen-
state of occupation number, but rather a superposition
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of states with occupation 0 and 1, for example. Then
winding takes

|0〉+|1〉√
2
⊗ |0〉+|1〉√

2
−→ |0〉−|1〉√

2
⊗ |0〉−|1〉√

2
. (11)

Clearly, the initial and final states are different (here,
they are orthogonal). This is a crucial hallmark of the
non-Abelian nature of the action of the braiding gen-
erators on these states. Thus, the essential ingredi-
ent necessary for braiding to connect states in a multi-
dimensional Hilbert space is that the initial state of the
zero mode system consists of superpositions of states
with even and odd numbers of photons.

Such superpositions do not only exist within the do-
main of quantum optics. The coherent states defined in
Eq. (5) consist of a superposition of photon states with
all occupation numbers, and can be created by shining
a coherent laser beam centered on a single vortex core.
Let us now consider a system of v vortices, into each of
which is loaded a coherent state of photons:

|λ1, . . . , λv〉 =

v∏
i=1

e−|λi|
2/2 eλib̂

†
0,i |0〉. (12)

The action of the braiding generators on these states is
found from Eq. (10) to be

τ̂i| . . . , λi, λi+1, . . . 〉 = | . . . ,−λi+1, λi, . . . 〉. (13)

To see that this braiding operation connects quantum
states in a multi-dimensional space of degenerate states,
consider again the winding of two vortices, which re-
stores their initial locations. For a coherent state, this
operation takes

|λ1, λ2〉 −→ | − λ1,−λ2〉 . (14)

The overlap of these two states is 〈λ1, λ2| − λ1,−λ2〉 =

e−2(|λ1|2+|λ2|2), whose magnitude is smaller than one, in-
dicating that the states are linearly independent. This
demonstrates that the Hilbert space spanned by the
braiding operations is multi-dimensional. Moreover, in
the limit where a large number of photons are loaded
into the zero modes (large |λ1,2|, which is to be expected
from a laser), the overlap is exponentially small, and the
initial and final states become orthogonal.

At this point, it is worthwhile to reflect on the signif-
icance of the fact that the effect of braiding the vortices
manifests itself at the level of coherent states, which
are essentially classical. While the braiding of these
vortices can be understood at the quantum (i.e. few-
photon) level, its effects permeate the entire zero-mode
Hilbert space for arbitrary occupation numbers. Conse-
quently, the quantum action of the braiding generators

B̂1B̂2

B̂2B̂1

FIG. 2: Schematic of the proposed photonic non-Abelian
interferometer. A coherent laser beam (one of three, one
for each vortex in a lattice) passes through a 50/50 beam
splitter (blue) and simultaneously enters two separate pho-
tonic lattices fabricated with the two braids to be compared.
The two output beams are reflected by mirrors (grey) into
another beam splitter that interferes the two signals and out-
puts the sum and difference to separate screens (black). For
the choice of braids used here, one screen shows a bright
and two dark spots, while the other screen shows the “logi-
cal complement” of the first, with one dark and two bright
spots.

survives the limit of large occupations, so that macro-
scopic effects of this braiding can be seen. In particular,
observe that λi → −λi under a braid corresponds, in the
limit of large |λi|, to a change in the sign of the electric
field Ei near the core of the ith vortex [c.f. Eq. (6)]. This
observation forms the basis of our discussion below.

We now propose an experiment that could provide di-
rect and unambiguous evidence for non-Abelian braid-
ing at the level of coherent states. The photonic non-
Abelian interferometer (PNAI) that we propose, shown
in Fig. 2, consists of two separate photonic lattices,
each with three vortices, with waveguides written into
the host medium in such a way that the vortex cores
wind adiabatically around one another according to a
specific pattern. (The adiabatic condition here corre-
sponds to demanding that any change in the position of
each waveguide as a function of z occur on length scales
much larger than the inverse photonic bandgap.) In one
lattice, the waveguide pattern executes a braid B̂1B̂2,
while in the other, the waveguide pattern implements
the braid B̂2B̂1. Interfering the light output from the
two lattices reveals the defining feature of non-Abelian
braiding, namely that performing the same braids in
different orders yields different results. We now proceed
through each stage of the interferometer setup.

We start with the input stage of the PNAI. We assume
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that the input light comes from three monochromatic,
coherent laser sources, each focused on the core of a
single vortex so that there is large overlap with the zero
modes. Each of the three input beams is split by a
50/50 dielectric beam splitter, so that the light entering
each vortex core comes from the same source beam. We
will denote the light entering the upper branch of the
interferometer in Fig. 2 as |λ1, λ2, λ3〉, and |λ̃1, λ̃2, λ̃3〉
for the lower branch. (The first beam splitter enforces
the phase relation λ̃j = −i λj .)

For the braiding stage of the interferometer, we
choose, for example, B̂1 = τ̂2τ̂1 and B̂2 = τ̂2τ̂

−1
1 τ̂2τ̂

−1
1

(see Fig. 2), which ensures that the vortices on the out-
put facets of both lattices are in the same order. [38]
In the SM, we provide more information about how to
write these braiding patterns into the waveguide array.
The output states from the two braids are

B̂1B̂2 |λ1, λ2, λ3〉 = | − λ1, λ2,−λ3〉 (15)

and

B̂2B̂1 |λ̃1, λ̃2, λ̃3〉 = | − λ̃1,−λ̃2, λ̃3〉. (16)

In the final stage of the interferometer, the output
beams from the braiding stage are combined at another
beam splitter. The sign differences between the coher-
ent states exiting the two branches of the interferometer
cause the light to interfere constructively at one detec-
tor and destructively at the other. Which detector this
is for each vortex depends on the relative signs of λi
and λ̃i, which in turn depend on the braids (see Fig. 2,
and SM for more details). Since the effects of dynamical
phases can be heavily suppressed in a controlled manner,
as discussed earlier, the only source of this interference
is the noncommutativity of braiding the vortices.

In summary, we have demonstrated in this paper a
means to realize photonic analogues of topological zero
modes in photonic lattices. We demonstrated that these
“topological guided modes” can be understood at both
the quantum and classical levels when the photons in
the waveguide array are weakly interacting. We fur-
ther proposed a photonic non-Abelian interferometer,
feasible with current technology, to detect unambiguous
signatures of the non-Abelian Berry phases that result
from braiding these topological guided modes.

We thank Luca Dal Negro for inspiring discussions,
and Chang-Yu Hou, Christopher Mudry, Titus Neu-
pert, and Luiz H. Santos for valuable feedback on the
manuscript. T.I. was supported by the National Science
Foundation Graduate Research Fellowship Program un-
der Grant No. DGE-1247312, and C.C. was supported
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