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Standard methods for including electromagnetic interactions in lattice quantum chromodynamics
calculations result in power-law finite volume corrections to physical quantities. Removing these
by extrapolation requires costly computations at multiple volumes. We introduce a photon mass
to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical
effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with precision
and cost comparable to conventional approaches that utilize multiple larger volumes. A significant
overall cost advantage emerges when accounting for ensemble generation. The proposed method
may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body
computations with long-range Coulomb interactions.

PACS numbers: 11.15.Ha, 12.38.-t, 12.38.Gc

Introduction – Approximately 95% of the visible
mass of the universe arises from the binding of quarks
into nucleons by the strong interactions of quantum chro-
modynamics (QCD). The relative mass difference be-
tween the proton and neutron is approximately 0.07%,
and is attributed to two sources of isospin symmetry
breaking in the Standard Model, namely, differences in
the down and up quark masses and their electromagnetic
charges. Although these breaking effects are minute, they
play an essential role in our understanding of the uni-
verse. For example, the primordial abundance of light
nuclear elements in the early universe is exquisitely sen-
sitive to the excess mass of the neutron compared to the
proton [1, 2].

Lattice QCD (LQCD) provides a first principles
approach for determining isospin breaking effects in
hadronic and nuclear processes. There are a handful of
LQCD calculations of the strong contribution to the nu-
cleon mass splitting [2–8] and a comparable number that
determine the electromagnetic corrections [4, 6–16]. One
impressive calculation includes both sources of isospin
breaking simultaneously and yields, among other quanti-
ties, a postdiction for the nucleon isospin splitting with
∼ 5σ statistical significance [8]. There exists an alternate
means for determining the electromagnetic self-energy
of the nucleon, from the Cottingham Formula [17–20],
which makes use of experimental cross sections as in-
put to dispersion integrals. However, the uncertainty at-
tained with this method [21–23] is not yet competitive
with the LQCD calculations.

Although inclusion of electromagnetism in LQCD is
theoretically straight-forward [24, 25], it presents practi-
cal challenges due to the long-range nature of the elec-
tromagnetic (QED) interactions. Specifically, such inter-

actions give rise to power-law finite volume (FV) correc-
tions, and their removal via extrapolation requires com-
putationally demanding simulations performed at multi-
ple volumes. An analytic understanding of the power-law
FV effects within such setups [8, 26–28] have enabled re-
liable FV extrapolations of the single hadron spectrum.

Despite the successful application of present tech-
niques, there are a number of reasons for considering
new methods. Control over FV modifications to light nu-
clear binding energies seem to require particularly large
volumes [26]. There are quantities in addition to the
spectrum for which precise knowledge of the QED modi-
fications are needed, for example, corrections to hadronic
matrix elements [29] and charged particle scattering [30],
both of which suffer from infrared (IR) challenges. LQCD
calculations are performed with multiple ultraviolet (UV)
regulators, providing valuable cross-checks on the con-
tinuum extrapolation of many important quantities [31].
Multiple IR regulators can do the same for LQCD calcu-
lations that include QED, but to date, only a few other
formulations have been considered [32–34]. Of those,
only one is constructed with a local quantum field the-
ory (QFT) [33, 34]. Finally, computationally efficient
means of accounting for IR effects are always desirable,
not just for lattice QCD+QED, but anywhere long-range
Coulomb interactions are present (see, e.g., [35]).

Motivated by these considerations, we demonstrate
the viability of an alternative IR regulator for lattice
QCD+QED simulations: namely, the introduction of a
photon mass mγ . Although a photon mass term mani-
festly violates gauge-invariance, it maintains locality and
its effects on hadronic quantities can be reliably quan-
tified and accounted for within an effective field theory
(EFT) framework. The introduction of a new scale, mγ ,
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FIG. 1. Zero-mode adjusted (filled) and unadjusted (open) ef-
fective mass difference for the kaon splitting (mγ/m̄π = 1/14
and L/a = 24). Diagonal grid lines have slope 2x; red/blue
points correspond to different sinks. Gray bands correspond
to uncertainties on the extracted value for ∆Meff.

implies an additional extrapolation within our approach.
With the aid of analytic formulas, however, we demon-
strate that for the spectrum, such extrapolations can be
performed at a single volume and yield results that are
consistent with conventional approaches. In the remain-
ing sections, we present the salient features of our calcu-
lation.

Analytic Considerations – In continuum Euclidean
spacetime, the Rξ gauge fixed action for the massive pho-
ton is given by

Lγ =
1

4
F 2
µν +

1

2ξ
(∂µAµ)2 +

1

2
m2
γA

2
µ (1)

where Fµν = ∂µAν − ∂νAµ; throughout this study, we
work in Landau gauge, corresponding to the limit ξ → 0.
An Abelian theory, such as QED, with a massive vector
gauge field is still perturbatively renormalizable. This
well known result follows from the fact that it is possi-
ble to find a BRST transformation that leaves the La-
grangian invariant up to a total divergence [36]. The
BRST symmetry is preserved if one uses a gauge invari-
ant UV cutoff [37], such as a spacetime lattice, thus the
renormalizability follows from the power-counting theo-
rems for a lattice regularization [38].

We consider three forms of corrections to correlators
and hadron mass differences at leading order in the fine-
structure constant α = e2/(4π). These corrections arise
from either the zero mode contribution to the partition
function, the presence of a finite photon mass, or FV
effects. The analytic forms of these corrections are de-
termined from an EFT for hadrons of mass M (M = mn,
mp, mK+ , and mK0) and charge Q; the naive expansion
is in mγ/M (i.e. ΛUV = M) [39]. The EFT is a general-
ization of nonrelativistic QED (NRQED) [40] for hadrons
that includes a photon mass term, and additional opera-
tors that are unconstrained by gauge invariance.

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
p n p− n

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

a/L

0.000

0.001

0.002

0.003

0.004

K+ K0 K+ −K0

∆
M
/M

FIG. 2. QEDTL induced mass differences, extrapolated to
infinite volume (taking KL = 2).

(1) Zero mode: For sufficiently small mγ , the zero mode
of the temporal photon field appearing in Eq. 1 must be
treated nonperturbatively [41]. In this regime, the two-
point function for single hadrons has the form

C(τ) = Ze−Mτ−xτ2

, (2)

where Z is an overlap factor; the zero-mode contribu-
tion appears as x = (4παQ2)/(2m2

γL
3T ), and vanishes

as T →∞ at fixed L and mγ .

(2) Photon mass: The hadrons electromagnetic mass
shift can be determined as a function of photon mass,
order-by-order in an expansion in powers of mγ/M . With
the electromagnetic mass written as M(α,mγ), we de-
fine the mass shift ∆γM(α,mγ) = M(α,mγ)−M(α, 0),
which is UV finite. These IR shifts are given by

∆γM
LO = −α

2
Q2mγ ,

∆γM
NLO =

(
Ce2 − α

4π
Q2
) m2

γ

M
. (3)

The leading-order (LO) expression is non-analytic in the
squared photon mass, whereas the next-to-leading order
(NLO) expression is analytic but arises from both loops
and local contributions [42]; the N2LO correction is of

order ∆γM
N2LO = O(m3

γ/M
2). The latter two orders

are accompanied by coefficients not fixed by the hadron
charge.

(3) Finite volume: The effects of FV can similarly be cal-
culated using an NRQED approach. This is a finite pho-
ton mass generalization of that pursued by [26, 27]. The
FV corrections to the electromagnetic mass are written
as δLM(α,mγ , L) = M(α,mγ , L) − M(α,mγ ,∞), and
for charged hadrons, are given up to NLO by

δLM
LO = 2παQ2mγ

[
I1(mγL)− 1

(mγL)3

]
,

δLM
NLO = παQ2

m2
γ

M

[
2I1/2(mγL) + I3/2(mγL)

]
,(4)
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TABLE I. QEDTL induced mass splittings, extrapolated to
L→∞ (mγ = 0, Kγ = 0).

splitting KL χ2/dof ∆M/M × 103

p− n 1 0.07/2 0.73(05)
2 0.03/1 0.70(13)

K+ −K0 1 0.29/2 3.71(06)
2 0.17/1 3.68(20)

TABLE II. QEDM induced mass splittings, extrapolated to
mγ = 0 (L/a = 24, KL = 1).

splitting mγ/mπ range Kγ χ2/dof ∆M/M × 103

p− n 1/14 - 1 2 0.09/5 0.79(06)
1/4 - 1/2 1 0.06/2 0.81(08)

K+ −K0 1/14 - 1 2 0.42/5 3.77(06)
1/4 - 1/2 1 0.12/2 3.79(06)

where

In(z) =
1

2n+ 1
2π

3
2 Γ(n)

∑
ν 6=0

K 3
2−n

(z|ν|)
(z|ν|) 3

2−n
(5)

and ν ∈ Z3. By constrast, the leading nonvanishing cor-
rection for neutral baryons (mesons) appears at N2LO
(N3LO). Because the zero mode of the temporal photon
is treated exactly in Eq. 2, the FV corrections are calcu-
lated with this mode removed–a manifestation of which
is the subtracted term appearing at LO.

Lattice Parameters and Ensembles – Electro-
quenched numerical calculations of the hadron spectrum
were performed using a modified version of the Chroma
software suite [43]. Studies were performed using dy-
namical SU(3) flavor symmetric isotropic QCD gauge
field configurations generated using a tadpole-improved
Lüscher-Weisz gauge action and clover fermion action.
The configurations correspond to a single lattice spac-
ing a = 0.1453(16) fm, three spatial extents: L ∼ 3.48
fm, 4.64 fm and 6.96 fm, and temporal extents T > L.
The pion (kaon) and nucleon masses in physical units are
m̄π = m̄K = 807.0(9.1) MeV and m̄n = 1.634(18) GeV,
respectively. This choice of masses ensures that the only
appreciable FV corrections to hadron masses are those
arising from QED effects. The QCD ensembles used
in this work comprise 956 (L/a = 24, T/a = 48), 515
(L/a = 32, T/a = 48) and 342 (L/a = 48, T/a = 64)
configurations and are a subset of those described in [44];
further details regarding the ensembles, lattice action and
parameters can be found there.

Uncorrelated photon field configurations Aµ were gen-
erated using two different lattice actions: a conventional
massless Coulomb gauge-fixed action with the zero-mode
removed [11, 24, 25] (QEDTL) [45], and a naive lattice
discretized form of Eq. 1 (QEDM ), where derivatives are
replaced by finite differences. Note that in Euclidean

space, Landau gauge is a complete gauge-fixing condi-
tion, and therefore in the latter case, the path integration
over nonzero-modes is well defined in the mγ → 0 limit.
The photon mass values considered in this work are given
by mγ/m̄π ∈ [1/14, 1/7, 1/4, 1/3, 5/12, 1/2, 7/12, 1]. In
both cases, results were obtained by computing correla-
tion functions on QCD+QED gauge configurations gen-
erated by post-multiplying each QCD configurations by
a single eieQqAµ , where Qu = 2/3, Qd = Qs = −1/3.
In the electroquenched approximation with SU(3) flavor
symmetry, isospin splittings have missing contributions
that are O(α2), and therefore negligible for this study.

In the electroquenched theory, the fine structure cou-
pling does not renormalize and therefore we take it to
be equal to its experimental value, α−1 = 137.036 . . .,
measured in the Thomson limit. The presence of elec-
tromagnetic interactions demands renormalization of the
valence bare quark masses mq, however. Since our lat-
tice regulator breaks chiral symmetry, this leads to an
additive shift in the quark mass. We tune the valence
quark masses so that, in the presence of electromagnetic
interactions, the neutral q̄q meson mass mqq obtained
from the connected part of the q̄q correlation function is
sufficiently close to the pion (kaon) mass m̄π. For our
electroquenched calculation, this choice of renormaliza-
tion is robust but the quark mass renormalization in the
full QCD+QED does not allow for a unique separation of
the QED and QCD effects [46]. All measurements were
performed using valence quark masses amu = −0.25501
and amd = ams = −0.24750 (the QCD bare quark mass
is amq = −0.2450); the resulting mistuning for the charge
neutral mesons was ∆mqq/m̄π . 0.1% for all values of
mγ/m̄π ≤ 1, where ∆mqq ≡ mqq − m̄π.

The mistuning from strong isospin-breaking can be es-
timated using chiral symmetry. For the kaon, one finds

∆mK+−K0

m̄K
' 1

2

∆muu −∆mdd

m̄K
. 0.0004 , (6)

while the nucleon correction is given by

∆mn−p

m̄n
' αd−u

2(∆mdd −∆muu)

m̄π

m̄2
π

4πfπm̄n
. (7)

We can estimate the parameter αd−u from the LQCD
determination of the md − mu contribution to the nu-
cleon mass splitting [2–8] and find ∆mp−n/m̄n . 0.0002.
In both cases, mistuning is a potentially sizable correc-
tion to our results, which affects both the QEDTL and
QEDM determinations. Although a precise quark mass
tuning is required for practical applications, it is not
needed in the present proof-of-principle study [47].
Analysis and Results – Shell-shell and shell-point

correlation functions were estimated using a single mea-
surement per configuration, with a randomly chosen
spacetime source location. Following [9], we average ob-
servables over +e and −e on each configuration in order
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FIG. 3. Volume adjusted (KL = 1) QCDM induced mass differences, extrapolated to mγ → 0. Fits were performed using
L/a = 24 data at all (right) and only the middle four (left) values of mγ .

to exactly cancel off the O(e) contributions to statisti-
cal noise. Mass differences due to electromagnetic effects
can be determined from the late-time dependence of sin-
gle hadron correlation functions CA(τ) and CB(τ), by
studying the plateau region of an effective mass differ-
ence ∆MAB

eff (τ) = MA
eff(τ) −MB

eff(τ). By exploiting the
correlations between A and B, we are able extract a clear
signal for the mass difference. For the nucleons, we con-
sider a generalized effective mass formula of the form:

Meff,exp(τ) = −1

a
log

C(τ + a)

C(τ)
+ 2xτ + xa , (8)

which neglects the backward propagation of states on a
lattice of finite temporal extent T . For mesons, we ac-
count for the backward propagating state by considering
a generalized effective mass formula of the form:

Meff,cosh(τ) =
1

a
cosh−1

[
eh(τ,a) + eh(τ,−a)

2

]
− xT , (9)

where h(τ, a) = xa(a − T + 2τ) + log[C(τ + a)/C(τ)].
Both formulas treat the zero mode of the temporal pho-
ton field appearing in Eq. 2 non-perturbatively (for neu-
tral hadrons x = 0 and these expressions reduce to their
conventional forms). Although this contribution is negli-
gible compared to the hadron masses, for the lattice pa-
rameters considered it can be comparable in magnitude
to the mass differences we wish to extract. Fig. 1 pro-
vides an explicit example of the behavior of ∆Meff(τ) for
the kaon mass splitting, computed both with and without
the zero-mode contribution accounted for.

Mass differences were determined for all volumes and
photon masses via a correlated constant least-squares fit
to ∆Meff in the plateau region, as demonstrated in Fig. 1.
An analogous determination from exponential fits to a
ratio of correlation functions yielded consistent results.
Systematic uncertainties were estimated by varying the
region over which fits were performed, and all uncertain-
ties were added in quadrature. Extracted mass shifts
were subsequently extrapolated to vanishing photon mass

and/or the infinite volume limit using the fit formula:

∆M(α,L,mγ) = ∆M(α) +

Kγ∑
k=0

∆γM
NkLO(α,mγ)

+

KL∑
k=0

δLM
NkLO(α,mγ , L), (10)

where Kγ and KL indicate the order of each extrapola-
tion. In the case of mass splittings, an appropriate linear
combination of mass shift formulas were used. Note that
for the QEDTL extrapolations, Kγ = 0; the appropri-

ate FV formulas for δLM
NkLO retain T -dependence, and

may be found in [8].
We carry out two independent analyses to test the via-

bility of our proposal: 1) an infinite volume extrapolation
of QEDTL induced mass differences, as is conventionally
performed, and 2) an mγ → 0 extrapolation of QEDM

induced mass differences using data at a single FV, but
after having first removed the lowest order FV contribu-
tions, δLM . Both types of extrapolation were performed
using Eq. 10, noting that many of the lowest-order contri-
butions are fixed by theory. Results for the first analysis,
using all three volumes, are provided in Table I and rep-
resentative fits are shown in Fig. 2. Results for the second
analysis on the smallest volume are provided in Table II
for comparison, and shown in Fig. 3. Analogous QEDM

extrapolations, performed at each of the three volumes,
are summarized in Fig. 4 and are consistent not only with
each other, but also the QEDTL extrapolations. In all
cases, we find that the numerical and theoretical mass
corrections are in excellent agreement down to at least
mγL ∼ 1.

The most computationally demanding part of our cal-
culation involves multiple inversions of the Dirac oper-
ator. Assuming, conservatively, a linear scaling with
spacetime volume, the total inversion cost for L/a = 32
is 515/956 × (32/24)3 ∼ 1.3 times greater than that of
L/a = 24. By comparison, the L/a = 48 inversion cost
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is ∼ 3.8 times greater. The L/a = 24 extrapolations us-
ing mγ/m̄π ∈ [1/4, 1/2] data, provided in Table II, are
consistent with those using all values of mγ . The results
are also consistent with the QEDTL extrapolation using
three volumes, provided in Table I, but required only 4/5
the computational cost. We therefore conclude that for
the same precision and accuracy, the numerical cost of
our QEDM calculation of the mass splittings is compa-
rable to or less than that of QEDTL.

Conclusion – This work demonstrates that it is pos-
sible to reliably estimate infinite volume hadron mass
differences induced by electromagnetism on a single lat-
tice volume with QEDM . Conservatively, the pion-less
EFT employed in this work is valid for mγ � 2mπ and
mπL & 4. Provided these inequalities are satisfied, the
analytic expressions obtained for the mass shift are valid
up to O(m3

γ/M
3, α2), and are independent of the pion

mass; from our numerics, it appears that this order is
sufficient to obtain reliable extrapolations of the mass
shifts in the regime mγ/mπ . 1 and mγL & 1.

On pre-existing lattice configurations, and for equal
computational cost, we obtain an equally precise uncer-
tainty in extrapolated differences as compared to the tra-
ditional method. This cost comparison does not account
for the significant overhead of generating the configura-
tions in the first place. The results of our analysis pave
the way for a more complete treatment of QED correc-
tions using this approach. When considering more in-
volved LQCD calculations, such as charged-particle scat-
tering [30], our method provides a mass gap to produce a
photon, thus increasing the range of energy for which the
standard Lüscher method [48, 49] for obtaining the scat-
tering phase shift can be employed. It will be interesting
to explore these types of calculations, and also to use our
method with chiral fermions, which do not suffer from
additive quark mass renormalization. Finally, it would

be interesting to see if our method of screened interac-
tions coupled with analytic extrapolation techniques is of
benefit to quantum many-body calculations.
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