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Topological mechanics and phononics have recently emerged as an exciting field of study. Here we
introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologi-
cally protected edge states and Weyl lines in their bulk phonon spectra, which lead to zero surface
modes that flip from one edge to the opposite as a function of surface wavenumber.

PACS numbers: 62.20.D-, 03.65.V{

Mechanical lattices with a perfect balance between the
number of degrees of freedom and the number of con-
straints (springs) with unit cells of appropriate inter-
nal geometry exhibit zero-frequency modes at boundaries
even though they have very few if any zero modes (ZMs)
in their bulk [1, 2]. The topological origin of these ZMs
was explained in Ref. [3], which introduced the frame-
work for a phononic version of topological band theory
that is well known in electronic contexts, including poly-
acetylene [4], quantum Hall systems [5, 6], and topologi-
cal insulators [7-12]. So far, attention has focused on one-
[13] and two-dimensional (2d) [14-17] model systems,
such as the generalized kagome lattice (GKL) [3]. In this
paper, we establish the fundamental result that three-
dimensional (3d) lattices exhibiting topological phonons
can be constructed and explore their properties. With
current 3d-printing technology, it is already possible to
construct 3d metamaterials of almost limitless complex-
ity. Our work provides templates for fabricating new ma-
terials with unusual elastic and phononic properties. We
introduce a 3d generalized pyrochlore lattice (GPL) with
deformed corner sharing tetrahedra, whose edges are oc-
cupied by central-force springs, as depicted in Fig. 1. We
show that the bulk phonon spectrum of these lattices ex-
hibit lines of topologically protected ZMs, analogous to
lines of touching bands in line-node semimetals [18-21]
and gyroid photonic crystals [22], that cause the num-
ber of protected surface modes to undergo discontinuous
jumps as a function of surface wavenumber.

In 2d GKLs (see the supplementary material for back-
ground information), there are lattices whose bulk vibra-
tional spectrum is “fully gapped” at all wavevectors q
except for the required acoustic ZMs at q = 0. These lat-
tices fall into topological classes distinguished by topolog-
ical invariants characterizing their reciprocal-space band
structure, and they exhibit topological zero-frequency
edge modes whose number on a given surface is deter-
mined by bulk topological invariants and local lattice
conformation at that surface. In GKLs, the transition
between topologically distinct phases is marked by the
existence of a line in the Brillouin zone (BZ) along which
normal-mode frequencies vanishes. This line of ZMs is
a consequence of the existence of straight lines of bonds
(filaments) that carry a state of self stress (SSS) in which

FIG. 1. (Color Online) The (a) PL and the GPL in the (b) X
and (¢) X_1 conformations (see text). The (green) arrow rep-
resents the (1,1, 1)-direction. (d) The unit cell of (a) viewed
along the —n-direction. The (red) dots with the (red) num-
bers mark the basis sites. The solid (dashed) arrows designate
the bond vectors a, (a;) of the internal (external) bonds.

the bonds are under tension but site forces vanish. The
Maxwell-Calladine counting rule (see below) [23, 24] ap-
plied with periodic boundary conditions, then guarantees
corresponding ZMs.

We find that 3d GPLs have a richer structure than
2d GKLs. Like GKLs, they exhibit gapless bulk modes
associated with localized SSSs: Arrays of straight paral-
lel lines of SSSs — six in the original pyrochlore lattice
(PL) aligned along the tetrahedral edges — have associ-
ated planes of ZMs in reciprocal space aligned perpendic-
ular to the array filaments, and flat planes of SSSs — four
in the PL along the tetrahedral faces — have associated
perpendicularly aligned lines of ZMs in reciprocal space.
As in the GKL, the bulk ZMs on these planes (lines) can
be lifted to non-zero frequency by distorting the lattice to
remove the straight lines (flat planes) of bonds. However,
unlike in the GKL, there are lines of bulk ZMs in recip-
rocal space that are protected by an integer topological
invariant defined on a path that encircles them, and that
influence the number and location of surface ZMs. These
are the mechanical analog of Weyl lines (WLs) that exist
in electronic [18-21] and photonic [22] systems. Analo-
gous Weyl/Dirac points [19, 25, 26] can also be present in
2d, as in the electronic spectra of graphene [27-29] and



phonon spectra in deformed square lattices [16] and 2d
models of jammed matter [17].

Our GPL is based on the PL with 4-site, 12-bond
unit cells. Our standard reference unit cell has sites
at the 4 corners of a tetrahedron at the basis positions
ri = 1(1,1,0), 2 = $(0,1,1), r3 = 3(1,0,1), and
ry = (0,0,0) and bonds as shown in Fig. 1 (d). Note
that this cell lacks inversion symmetry, as do all other
unit cells in GPLs, and, as a result, it has a nonvanish-
ing dipole moment when charges d = +3 are placed at its
sites and charges —1 at the center of its bonds. The prim-
itive translation vectors of the lattice are Ty = (1,1,0),
Ty = (0,1,1) and T3 = (1,0,1). There are six inter-
nal (external) bonds with bond vectors a; to ag (a) to
ag). The triangular faces of lattice tetrahedra lie in four
sets of parallel planes and form kagome lattices in each.
One of the four sets has its layer normal parallel to the
(1,1, 1)-direction. In the GPL, this latter set of planes
will play a distinguished role, and we will refer to it as
the GKL planes.

In the PL, there are 6 sets of straight filaments,
built from the bonds on the 6 edges of the tetrahe-
dra, that carry SSSs. Following Ref. [3], our generaliza-
tion is designed to convert specific straight filaments into
“zigzagged” ones that do not carry SSSs. In the GPL,
the positions of the basis sites are displaced relative to
those of the PL, r; — r; + dr;(X), where

or1(X) = x1V38 — 2083, (1a)
ora(X) = 22V38 — 7341, (1b)
ors(X) = z3V3é3 — 114y, (1c)
dry(X) = —zn, (1d)

with X = ($1,$2,$372), éj = aj/|aj|, éj = (anfl)/|an
|, and n the unit vector in the (1,1, 1)-direction. The
parameter z determines the vertical position of site 4 rel-
ative to the GKL planes. If z # 0 and 1 = 22 = 23 = 0,
the 3 sets of filaments outside the GKL planes (com-
prised of bonds indexed by 4, 5, and 6, respectively) are
zigzagged whereas the 3 sets of filaments within the GKL
planes (comprised of bonds indexed by 1, 2, and 3, re-
spectively) are still straight. A nonzero x,, converts the
straight filament parallel to &, to a zigzag one, cf. Ref. 3.
We have also studied more general versions of our model
lattice in which sites 1 to 3 can adopt positions out-
side the GKL planes, thereby destroying their indepen-
dent SSSs. For simplicity, however, we will focus on the
model lattices described by Eq. (1). More specifically, we
will focus on the 2 lattice conformations corresponding
to the parameter settings X = X; = (0.1,0.1,0.1,0.1)
and X = X_; = (-0.1,0.1,0.1,0.1), see Fig. 1. The
GKL planes of these lattices are equivalent to the GKL
conformations depicted in Fig. 2 (c) and (e) of Ref. [3],
respectively.

Any central-force elastic network consisting of peri-
odically repeated unit cells with n sites and np bonds

is governed by the generalized Calladine-Maxwell theo-
rem [1, 23, 24] no(q) — s(q) = dn — np at each wavevec-
tor q in the BZ. It relates the number no(q) of ZMs
and the number s(q) of SSSs to the invariant proper-
ties n and npg of the unit cell and follows from the the
properties of the np X dn compatibility matrix C(q) re-
lating bond displacements u(q) to bond extensions e(q)
via C(q)u(q) = e(q) and the dn x np equilibrium ma-
trix Q(q) = C'(q) relating bond tensions t(q) to site
forces f(q) via Q(q)t(q) = f(q). ZMs constitute the
null space of C(q) and SSSs the null space of Q(q).
When all masses and spring constants are set to unity, as
we do here, the dynamical matrix governing the phonon
spectrum is simply D(q) = Q(q)C(q). Under periodic
boundary conditions, the GPL satisfies dn = np, i.e., it is
a Maxwell lattice [1] in which at each q including q = 0,
there is always one SSS for each ZM. The compatibil-
ity, equilibrium, and dynamical matrixes are all 12 x 12
matrixes (see the supplemental material for details).
The elastic energy density can be expressed [30] in
terms of the six-dimensional vector of symmetric strains
U = (Ugz, Uyy, Uzz, Ugy, Ugs, Uy>) and the 6 x 6 Voigt
matrix K: f = %UT -K - U. The matrix K is deter-
mined by the normalized eigenvectors of the null space
of Q(q = 0) [1]. The PL has six q = 0 SSSs, with nonzero
overlap with affine strain that stabilize all six indepen-
dent strains. For X; and X_i, there are no straight
filaments, but there are three q = 0 SSSs paired with
the three required q = 0 translation ZMs. K has three
positive and three zero eigenvalues, the latter with as-
sociated eigenvectors corresponding to three zero-energy
elastic distortions of the unit cell called Guest modes
[31]. For Xy, the three Guest modes are proportional
to (2,0,0,0,0,-1), (0,2,0,0,—1,0) or (0,0,2,—1,0,0).
For X_1, the Guest modes involve all components of U.
The topological properties of the phononic band struc-
ture of the GPL are determined by the C or Q ma-
trixes [3]. The determinants of these matrices map a path
in g-space onto a path in the complex plane. Because Q
and C are invariant under q — q + G for any reciprocal
lattice (RL) vector G, any path in g-space whose start
and end points are separated by a RL vector will map
onto a closed path in the complex plane. For simplicity,
we focus on paths in g-space that are straight lines along
the primitive vectors by, by, bs, satisfying b;-T; = 27;;,
of the reciprocal lattice. The integer winding numbers of
the corresponding closed paths in the complex plane are
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where q, specifies the components of q in the surface
BZ of the lattice plane defined by G, p is the component
of q along G, and G = |G|. In practice, we calculate
these winding numbers numerically using Mathematica.
In fully gapped systems, the winding numbers are inde-
pendent of q . In systems with Weyl singularities, they



R

R

FIG. 2. (Color Online) Winding numbers m1, mo and ms for
(a) X1 and (b,c,d) X_1. ¢1 and g2 are the components of the
respective g s. The (red) polygons depict projections of the
edges of the top and equatorial surfaces of the BZ onto these
planes. The black polygon in (a) represents the surface BZ.
The color-coding of the shaded areas is as follows: pink corre-
sponds to winding number 1, white to 0, gray to -1, and black
to -2. Yellow indicates points where the numerical integration
failed to converge properly. The (brown) solid lines indicate
the 2-fold degenerate zero mode along the (1,1, 1)-direction.
The (cyan) light line indicates the (1,1, —1)-direction (guide
to the eye).

are not. We use this fact to detect and map out Weyl
singularities in the GPL. The idea is to calculate the
winding numbers for an entire set of g, ’s in a given sur-
face BZ. For example, for our integration along b, we
sweep the BZ that is spanned by the unit vectors €11 =
(bl X b2)/|b1 X b2| and 6172 = (bl X él_’l)/|b1 X 6171|.
Figure 2 compiles our results for the winding numbers
mi(q.) =m(qL, G = b;).

There is a qualitative difference between X7 and X_4
in the values and distribution of their winding numbers:
For X7, m; = —1 throughout the surface BZ associated
with each b;. For X_;, boundaries determined by the
projections of WLs onto any given surface BZ divide the
latter into regions with different winding numbers. In ad-
dition to the WLs, for both X; and X _; there is a two-
fold degenerate line of ZMs along the (1,1, 1)-direction
(that we verify by diagonalizing D for q along n) whose
winding number is zero. This line is a consequence of
the q; = 0 SSS of the flat GKL planes in the GPL. In
the more general version of our GPL, alluded to above,
this line splits up into two oppositely-charged WLs when
the reference positions of one of the basis sites 1, 2 or 3

FIG. 3. (Color Online) WLs for X_; traversing the (red)
dedocahedron-shaped BZ. The (black) points mark our nu-
merical reconstruction of the WLs, the (green) lines them
stem from our analytical estimate. For X1, only the two-fold
degenerate (brown) line along the (1,1, 1)-direction is present.

is moved out of the GKL plane. These WLs are sepa-
rated by a distance proportional to the distance of the
respective sites from the GKL plane.

We can reconstruct the WLs in 3d from their pro-
jections onto the 2d BZ defined by the b;’s shown in
Fig 2: A point on a projected line with coordinates
(¢1,92) in the plane perpendicular to by is replaced by
q = pBl + q1él,1 + QQ(A:LQ, where Bl = b1/|b1|, and like-
wise for the projection onto the plane perpendicular to
b,. Then, we calculate the intersections of the result-
ing manifolds. Finally, we discard all intersection points
whose projections onto the plane perpendicular to bs are
incompatible with our results for ms. Our results for the
WLs in 3d are depicted in Fig. 3. As follows from the
previous paragraph, the only ZMs that we encounter for
X1 lie on a line along n. For X_; there is in addition a
pair of WLs. These WLs do not form closed loops but
follow a path in the BZ between points separated by a
RL vector.

It is informative to compare our numerical results to
analytical predictions for the WLs. To this end, we con-
sider small deviations about the PL as parameterized by
X: = (g,5,6,¢) and X_. = (—¢,¢,¢,¢), and we expand
det C(q) in powers of the ¢; and . For both X, and
X_ ., the resulting expansion is of the form

det C = f®(q) ¥ + f@(q) 2+ FO (@) e + 0(cf), (3)

where the f(™(q) are different functions of mth order
in g; for X; and X_. that vanish for any q along h. We
solve for the wave-vectors that are zeros of the right hand
side of Eq. (3). For X, there is only one real solution
that corresponds to any q along n. For X_., there are
additional real solutions, which we display for e = 0.1 in
Fig. 3. Note the nice agreement at small ¢ between the
numerical and analytical results for X; and X_;.

Now, we turn to surface modes. In general, the to-
tal edge index v(q,,G) = no(q,,G) — s(q,,G) is the
sum of a local part v1,(G) [1, 3], which is independent



of q,, and a topological part vr(q,,G). At free sur-
faces, s(q,,G) = 0, and v(q,,G) = no(q,,G). The
local count is G- R /(27), where G is the outer normal
to its lattice plane and Ry, is the difference between the
dipole moment of the surface unit cell and that of the
reference cell of Fig. 1 (See supplemenary material). In
systems without Weyl singularities, the winding numbers
m; are independent of wave vector as mentioned above
and define a topological charge Ry = Zi m;T;. For X1,
in particular, Ry = —(2,2,2). The topological surface
count in these systems is simply vr(G) = G - Ry /(27),
independent of q . In systems with Weyl singularities,
the topological count vr(q,,G) = m(q,,G) depends
on q; and is not defined globally.

For simplicity, we focus here on surfaces whose nor-
mals are parallel to primitive vectors b; of the recipro-
cal lattice. We calculate the complex inverse penetra-
tions depths x(q ) by setting q = ixby + ¢1€1,1 + ¢2€1 2,
and similarly for ¢ = 2,3, and solving for the roots
of det C(ik,q1,q2) = 0. Positive (negative) values of
k' = Re(k) correspond to ZMs that decay in the direc-
tion of by (—by) and that are, therefore, localized on
the surface with outer normal along —b; (b;). Figure 4
presents plots of £’ and vp; = vr(—b;) as a function of
q1 and fixed g2 = 0.1 for our three surface orientations
and for X; and X_;. For each X and b;, there are pos-
itive and negative values of k' indicating localization on
both surfaces, but as required by the Calladine-Maxwell
theorem, there is always a total of three ZMs on the two
surfaces. For X1, the three x’s are the same function of
¢1 for all b;s. In addition v7; = 1.0 is independent of
i. This implies that v, = vr(—b;) = 1.0 for every i.
vy, is a property of a surface that does not change if the
topological class is varied by changing X. For X_1, the
functions «'(q1) are different for the different surfaces,
and the number of positive and negative values undergo
discontinuous changes in accord with similar changes in
vri(q1). At the —bq surface, vy takes on values of 2
and 1, and, as required, the number of modes localized
on the —b; surface changes from 2 to 1 and back again
with the jumps in vpq. Similarly, for —by surface, v o
takes on values 0 and —1 and ng(g1, —bz) values 1 and 0
(though the latter region is relatively small); and for the
—bgs surface, v is zero almost everywhere except for a
very small region near the origin where it is equal to 1
and v3(q1, —bs) is either 1 or 0. In the supplementary
material, we provide more detail about the calculation
of Ry, and we show results for surfaces perpendicular to
the G = +27(1,0,0) RL vector. In this case, four bonds
must be cut to liberate a strip, and there are four surface
ZMs distributed between the two surfaces.

In conclusion, we have studied topological phonons in
3d in a generalized pyrochlore lattice. Our model lattice
displays distinct topological states and thereby under-
scores the validity in 3d of the general theory for topo-
logical phonons laid out in Ref. [3]. Together with the
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FIG. 4. (Color Online) &’ (black lines) and vr (blue straight
lines) of surface ZMs with fixed g2 = 0.1 for (a) X; and (b, c,
d) X_1.

recent work on generalized square lattices [16] and 2d
models of jammed matter [17], our work hints that Weyl
singularities are a common feature in Maxwell lattices
and that the GKL is special in that its unit cell does not
provide enough degrees of freedom to have them. The
present work indicates that the GPL is a candidate for
detecting Weyl lines in mechanical experiments on GPL-
like meta-materials which should become producible by
3d-printing technologies in the foreseeable future.
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