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It may soon be possible for Advanced LIGO to detect hundreds of binary black hole mergers
per year. We show how the accumulation of many such measurements will allow for the detection
of gravitational-wave memory: a permanent displacement of spacetime that comes from strong-
field, general relativistic effects. We estimate that Advanced LIGO operating at design sensitivity
may be able to make a signal-to-noise ratio 3(5) detection of memory with ∼ 35 (90) events with
masses and distance similar to GW150914. We highlight the importance of incorporating higher-
order gravitational-wave modes for parameter estimation of binary black hole mergers, and describe
how our methods can also be used to detect higher-order modes themselves before Advanced LIGO
reaches design sensitivity.

The landmark detection of gravitational waves (GWs)
indicates binary black hole mergers will soon be observed
regularly with Advanced LIGO (aLIGO) [1]. This opens
the door to new areas of study not possible with light
given the electromagnetically quiet nature of black hole
mergers. We turn our attention to Christodoulou GW
memory [2–7], a purely strong-field gravitational effect.
We show memory can be probed in the near future using
an ensemble of observations of binary black hole systems.

Memory induces a monotonically increasing GW
strain, a permanent change in the relative distance be-
tween two freely falling test masses [2, 3]. Pulsar timing
arrays regularly search for memory [8–12]. However, the
memory component is a small fraction of the total strain
for a merger, making it improbable that aLIGO will de-
tect memory from an individual coalescence signal [6].
The optimal, matched filter memory signal-to-noise ratio
for an event like GW150914 with two aLIGO detectors at
design sensitivity averaged over astrophysical parameters
is S/N = 0.42. Although this is too small to be detected,
it is non-negligible. However, an ensemble of events can
be used to detect memory. Moreover, GW150914 im-
plies mergers are relatively abundant in the Universe, and
therefore GW observations are likely to become common-
place in the near future [13].

The production of memory waveforms from numeri-
cal relativity simulations is in its infancy [14]. Analytic
waveforms that use a variety of approximations match
numerical simulations qualitatively. Both techniques
yield a step-function-like waveform with comparable rise
time and amplitude [6, 14, 15]. We use the minimal-
waveform model [16]. This phenomenological model has
been matched to calculations using both effective-one-
body approach [16] and with pure numerical relativity
simulations [14]. We use this model because it is sim-
ple, and provides qualitative agreement with waveforms
derived by other means.

For non-spinning, quasi-circular binaries, the mem-
ory waveform is linearly polarized, and is described

by the following parameters: masses (m1, m2), dis-
tance to the source d, inclination angle θ, and polariza-
tion angle ψ. The assumption of no spin is consistent
with GW150914 [1, 17], although the formalism can be
straightforwardly extended. However, for strong preces-
sion where the orbital plane precesses, the memory is
not linearly polarized, complicating the analysis. Mem-
ory waveforms for equal-mass binaries with aligned spins
can be found in [14].

The detection of the coalesence’s oscillatory compo-
nent favours face-on binaries, where the binary’s orbital
angular momentum vector is aligned with the observer’s
line of sight, θ = 0. However, the memory component
of the strain scales as h(mem) ∝ sin2 θ(17 + cos2 θ) [16],
implying face-on binaries have zero memory, and edge-
on binaries have maximal memory. Our prescription for
detecting memory requires each binary to be detected
through its oscillatory component. Parameter estimation
for GW150914 yields θ ≈ 140◦, but is consistent with be-
ing a face-on/off system [17]. Comparing the memory
amplitude for θ = 140◦ and θ = 90◦, we find that the
signal from a θ = 140◦ binary is 43% the maximum pos-
sible. The angle θ does not affect the memory in any way
other than its amplitude.

The polarization modulates the amplitude of the mem-
ory signal and the sign. Our strategy for detecting mem-
ory relies on the coherent summation of an ensemble of
sub-threshold signals. We require knowledge of the sign
of the memory for individual detections, otherwise the
memory adds incoherently and cancels1. However, it
turns out that the sign of the memory cannot be deter-
mined using the h`m = h22 mode of the oscillatory signal
that is normally used in parameter estimation [17, 18].
Fortunately, the sign can be determined using higher-

1 Strictly speaking, it is still possible to measure a signal from an
incoherent sum, but this grows much slower.
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FIG. 1: Gravitational-wave time series of the higher-order
modes for an edge-on binary with parameters consistent with
GW150914 [1, 17], where the vertical axis ∆h`m is defined
in Eqn. (1). The red curve shows the ∆h22 mode, which is
identically zero, implying the GW polarization angle ψ and
phase at coalescence φc are degenerate variables. The blue
trace shows

∑
`

∑
m ∆h`m for ` = 2, 3 and all corresponding

values of |m| > 0. The fact that ∆h`m 6= 0 implies that
higher-order modes can be used to break the ψ degeneracy
and thus determine the sign of the memory.

order modes.

Using the h22 mode, the oscillatory waveform is in-
variant under a simultaneous rotation of the polarisa-
tion angle, ψ → ψ + π/2, and a shift in the phase
at coalescence, φc → φc + π/2. That is h22(ψ, φc) =
h22(ψ+π/2, φc +π/2). However, memory acquires a mi-
nus sign under the same transformation: hmem(ψ, φc) =
−hmem(ψ + π/2, φc + π/2). This degeneracy between ψ
and φc implies we cannot know the sign of the memory
using only the h22 component.

Higher-order h`m’s can be used to break the degener-
acy between ψ and ψ + π/2; see Fig. 1. We calculate
waveforms using surrogate models [19] that include all
modes up to ` = 3 [20]. We define

∆h`m ≡ [h`m(ψ, φc)− h`m(ψ + π/2, φc + π/2)]−2Y`m,
(1)

where −2Y`m are the spin-weighted spherical harmonics.
One can think of ∆h`m as a degeneracy-breaking param-
eter; a measurable ∆h`m(t) breaks the degeneracy be-
tween ψ and ψ + π/2, and determines the sign of the
memory2.

The red trace in Fig. 1 shows ∆h22 = 0, because the
` = m = 2 mode does not break the degeneracy. The
blue curve shows

∑
`

∑
m ∆h`m for ` = 2, 3 and all cor-

responding |m| > 0. The ψ degeneracy is broken and the

2 In principle, uncertainty in parameters such as component
masses and inclination angle reduces our ability to measure
∆h`m. Using a Monte Carlo simulation, we estimate only an
≈ 2% systematic error in ∆h`m on average, suggesting this is a
small effect.
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FIG. 2: Gravitational-wave strain time series using parame-
ters consistent with GW150914 [1, 17]. The top panel shows
the strain time series with GW memory (blue curve) and
without (black). The bottom panel shows only the memory-
induced strain series, where the blue curve uses the maximum
likelihood parameters for GW150914 [1, 17]. The red dot-
ted and dashed curves are binaries at the same distance (410
Mpc) and with the same orientation (θ = 140◦), but equal
mass binaries with m1,2 = 20M� and 50M� respectively (cf.
65M� for the blue curve). Inset: the solid blue curve shows
a zoomed-in version of the blue curve from the bottom panel,
while the dashed curve is after a high-pass filter to show the
signal visible in aLIGO.

sign of the memory determined when ∆h`=(2,3)m (blue
curve) is detectable with matched filtering.

In Fig. 2, we plot the strain time series for a binary
with parameters equivalent to the maximum-likelihood
estimates for GW150914: m1 = 36M�, m2 = 29M�,
d = 410 Mpc and θ = 140◦ [1, 17]. The top panel shows
the full signal with and without memory (blue and black
curves, respectively). The bottom panel shows only the
memory component. The memory component is calcu-
lated using Eqn. (9) from Ref. [16] and the method de-
scribed therein. The red dotted and dashed curves are
binaries at the same distance, and with the same orien-
tation, but with different masses: m1,2 = 20M� (dotted
curve) and 50M� (dashed curve).

LIGO is not sensitive to strain below ≈ 10 Hz. The
solid blue curve in the inset to Fig. 2 shows a zoomed-
in version of the GW strain corresponding to the blue
curve in the bottom panel, while the dashed curve shows
the signal after applying a high-pass filter with a 10 Hz
cut-off.

The memory amplitude scales linearly with the black-
hole masses. The mass also changes the memory rise
time, and hence its spectral shape, but only at frequen-
cies greater than one over the rise time. LIGO is more
sensitive to higher mass binaries providing the character-
istic rise time of the memory signal is smaller than 1/f0,
where f0 is the detector’s low-frequency seismic cut-off.
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We calculate a matched-filter signal-to-noise ratio,
S/N. For a strain time series h(t) the S/N is

S/N = 〈h, u〉 /
√
〈u, u〉, (2)

where u(t) is the template, and

〈a, b〉 ≡ 4Re

∫ ∞
0

ã(f)b̃?(f)

Sh(f)
df, (3)

where Sh(f) is the noise power spectral density.
This S/N calculation assumes the oscillatory compo-

nent of the coalescence has been successfully removed
from the h(t) and that our knowledge of the mem-
ory waveform is complete. We test how this latter as-
sumption affects our ability to measure S/N. We cre-
ate memory signals with maximum-likelihood parame-
ters of GW150914, and calculate the S/N expectation
value recovered using mismatched templates with m1,2 =
46, 39M� and m1,2 = 26, 19M� (note these errors are
much larger than the 90% CL intervals of GW150914).
We find at worst, the S/N expectation value decreases by
≈ 21%.

There are good reasons to suppose that the imper-
fect subtraction of the oscillatory component of the sig-
nal does not significantly affect our results. Firstly, the
memory signal is loudest during the merger phase. It is
dominated by the lowest frequency component in the ob-
serving band. During the merger, the oscillatory compo-
nent is about an order of magnitude higher in frequency,
suggesting that the residuals from imperfect subtraction
will not contribute significantly to the memory signal.
Secondly, as we discuss below, the memory strain adds
coherently whereas residual strain from imperfect sub-
traction adds incoherently. Therefore, we do not expect
uncertainty associated with the binary parameters to sig-
nificantly affect our results.

For multiple events, we construct an optimal estimator
for the weighted-memory sum

ĥtot =

 N∑
i=1

NIFO∑
j=1

ĥi,j
σ2
i,j

/ N∑
i=1

NIFO∑
j=1

σ−2
i,j

 , (4)

σtot =

 N∑
i=1

NIFO∑
j=1

σ−2
i,j

−1/2

, (5)

where ĥi,j is the estimator for the memory amplitude of
the ith event detected in the jth interferometer, σi,j is
the associated uncertainty, and σtot is the uncertainty
associated with ĥtot. The variable, σi,j depends on sky
location and polarisation angle. Combining (4) and (5)
gives an expression for the optimal, total S/N

Ŝ/Ntot =

 N∑
i=1

NIFO∑
j=1

Ŝ/Ni,j

σi,j

/ N∑
i=1

NIFO∑
j=1

σ−2
i,j

1/2

,

(6)

where Ŝ/Ni,j = ĥi,j/σi,j .
The total expectation value for the total S/N for N

events observed with NIFO interferometers is

〈S/Ntot〉 =

 N∑
i=1

NIFO∑
j=1

〈
S/Ni,j

〉2

1/2

. (7)

In the limit where the signals from all mergers have the
same 〈S/N〉i, 〈S/Ntot〉 ∝

√
NNIFO. For this analysis

we assume a network consisting of LIGO Hanford and
Livingston interferometers, NIFO = 2.

This frequentist approach allows us to estimate the
total number of detected merger events required to detect
memory. We also develop a complementary method for
determining the Bayesian evidence for a memory signal.
Consider a single coalescence detected by aLIGO. The
Bayesian evidence, Z =

∫
L(h|~ξ)p(~ξ)d~ξ, where ~ξ are the

model parameters, L(h|~ξ) is the likelihood of the data

h(t) given the model, and p(~ξ) is the prior probability
for each of the parameters. The log-likelihood is

lnL(h|~ξ) ∝ −1

2

M∑
k=1

∣∣∣h̃k − ũk/d∣∣∣2
σ(fk)2

, (8)

where we sum over frequency bins fk, and σ(fk) is the

interferometers noise spectrum. The variable ũk(~ξ) is the
template describing the full merger signal, including both
the oscillatory and memory components. The Bayes fac-
tor BF = Z/Z0 is the evidence ratio where the denomi-

nator is the null hypothesis Z0 =
∫
L0(h|~ξ)p(~ξ)dξ. The

likelihood L0 is the same as L in Eqn. (8), except we
use a different template ũ0

k that includes the oscillatory
component, but no memory. The Bayes factor compares
the memory hypothesis to the no-memory hypothesis.

For multiple events the evidence is

Ztot =

N∏
i=1

NIFO∏
j=1

Zi,j . (9)

The total Bayes factor for N events observed in NIFO

interferometers is BF = Ztot/Z0,tot.
Having introduced two statistical formalisms, we ap-

ply both to Monte Carlo simulations. For simplicity, we
work with memory-only waveforms, assuming the oscil-
latory part has been perfectly subtracted. In order to
test the validity of this assumption, we derive a ‘cleaned’
memory template by projecting out spectral content co-
variant with the other astrophysical parameters. For loud
signals, the cleaned template is insensitive to residual er-
rors from imperfect subtraction. By projecting out part
of the memory waveform, we throw out a small amount
of signal. However, we estimate the loss of S/N to be
small: only ∼0.1%.

For the sake of pedagogy, we begin with a simu-
lation of an ensemble of binaries with fixed distance,
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d = 410 Mpc and fixed component masses (m1 = 36M�,
m2 = 29M�), but random values of inclination, polari-
sation, and sky position.

For each binary we calculate three (expectation val-
ues of) signal-to-noise ratios. Firstly, we calculate the
oscillatory signal-to-noise ratio, 〈S/Ncbc〉. Secondly, we
calculate the ψ-degeneracy-breaking signal-to-noise ratio,
〈S/N∆h〉 (see Eqn. (1)). We include ` ≤ 3 modes that
are key to resolving ψ. Measurement of 〈S/N∆h〉 > 0
is, in and of itself, interesting as it is evidence of higher-
order modes. We calculate that a single detection of a
GW150914-like event at design sensitivity will produce
an 〈S/N∆h〉 & 5 detection, suggesting this effect can be
detected well before design sensitivity [see also 21–23].
Thirdly, we calculate the memory signal-to-noise ratio
〈S/N〉. We only retain confident oscillatory detections,
〈S/Ncbc〉 ≥ 12 [24].

The cumulative 〈S/Ntot〉 is shown in Fig. 3. In the top
panel, the solid curves represent the expectation value
while the shaded region is the one-sigma uncertainty. The
blue curve sums the memory contributions from all bina-
ries. This is unrealistic as it includes binaries where we
cannot measure the polarisation, and therefore do not
know the memory sign. The red curve adds the mem-
ory contribution only from binaries where we are confi-
dent the memory sign is correct. That is, we only add
the memory contribution for signals with 〈S/N∆h〉 > 2,
implying we are & 95% confident that ψ is accurately
measured, and the sign of the memory is correct. We
have verified through simulations3 that we recover the
correct sign of the memory 95% of the time for signals
with 〈S/N∆h〉 = 2. Binaries that fail this cut are added
with memory 〈S/N〉 = 0.

The bottom panel of Fig. 3 shows 20 Monte Carlo reali-
sations, highlighting the stochasticity of 〈S/Ntot〉 growth,
and the contribution of the second cut. We highlight one
realisation in red, and show with blue crosses binaries
with 〈S/N∆h〉 < 2, and therefore have zero memory con-
tribution.

Figure 3 shows that one can expect an 〈S/Ntot〉 = 3 (5)
detection of memory after ∼ 35 (90) GW150914-like de-
tections with aLIGO at design sensitivity, although this
could happen with as few as ∼ 20 (75).

In Fig. 4 we plot the cumulative Bayes factor of the
memory signal as a function of the number of events.
As with Fig. 3, we plot in blue the cumulative memory
signal from all the binaries, and in red we only add the
memory contribution from signals where we are confident

3 We perform a Monte Carlo study with GW150914-like binary
mergers at a distance such that

〈
S/N∆h

〉
= 2 with aLIGO sen-

sitivity. We compute the maximum likelihood using templates
with the correct sign of the memory, and with the opposite sign,
finding that the larger likelihood gives the correct sign of the
memory for 95% of binaries.
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FIG. 3: Evolution of the cumulative signal-to-noise
〈
S/Ntot

〉
as a function of the number of binary black hole mergers. All
binaries have the same distance and mass as the maximum
likelihood parameters of GW150914, but have random distri-
butions of inclination, polarisation and sky position. In the
top panel, the solid curves represent the expectation value
and the shaded region is the one-sigma uncertainties. The
blue curve sums the memory signal-to-noise contribution from
all binaries, and the red curve assigns memory 〈S/N〉 = 0 for
those binaries where the polarisation angle, and hence the
sign of the memory cannot be determined. The bottom panel
shows 20 individual realisations of the red curve in the top
panel. One particular realisation is highlighted in red; the
binaries assigned 〈S/N〉 = 0 are shown with blue crosses.
In both panels, the horizontal dashed and solid lines show〈
S/Ntot

〉
= 3 and 5 respectively.

that the sign of the memory signal is correct. Again, the
thick curves show the mean value and the shaded region is
the one-sigma uncertainties. As before we highlight the
stochastic nature of the growth of this signal by show-
ing 10 individual realisations. The results of Fig. 4 are
consistent with that of Fig. 3: one is likely to be confi-
dent of a detection of memory after ∼ 35 events when
(ln BF)tot & 8

Repeating the simulations presented in Figs. 3 and 4,
but assuming that events are distributed uniformly in
volume, we find that the time to detection changes by
less than a few percent. This is because the growth of
〈S/N〉tot is dominated by a relatively small number of
loud events.
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FIG. 4: Evolution of the cumulative Bayes factor as a func-
tion of the number of binary black hole mergers. All binaries
have the same distance and mass as the maximum likelihood
parameters of GW150914, but have random distributions of
inclination, polarisation and sky position. The thick, solid
curves represent the expectation value and the shaded region
is the one-sigma uncertainties. The blue curve sums the mem-
ory signal-to-noise contribution from all binaries, and the red
curve assigns memory 〈S/N〉 = 0 for those binaries where the
polarisation angle, and hence the sign of the memory cannot
be determined. We also show in grey 10 individual realisa-
tions from the red curve.

Given there is only a single GW observation to date,
we do not know the mass distribution of binary black
holes throughout the Universe. The memory component
of the GW strain scales proportionally to the mass of the
binary; if GW150914 was a relatively high-mass binary
compared to the population, then the number of events
required to detect memory increases. However, there are
some theoretical suggestions [e.g., 25] that GW150914
may be at the lower end of the mass distribution, imply-
ing GW memory could be detected sooner.

We provide a proof-of-principle that LIGO and the
global network of ground-based GW interferometers will
be able to detect GW memory with dozens of nearby
events. The addition of more GW detectors such as
Virgo, KAGRA or LIGO-India will further reduce the
time to detection.
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