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Topological numbers can characterize the transition between different topological phases, which
are not described by Landau’s paradigm of symmetry breaking. Since the discovery of quantum
Hall effect, more topological phases have been theoretically predicted and experimentally verified.
However, it is still an experimental challenge to directly measure the topological number of various
predicted topological phases. In this paper, we demonstrate quantum simulation of topological
phase transition of a quantum wire (QW), by precisely modulating the Hamiltonian of a single
nitrogen-vacancy (NV) center in diamond. Deploying quantum algorithm of finding eigenvalues, we
reliably extract both the dispersion relations and topological numbers. This method can be further
generalized to simulate more complicated topological system.

PACS numbers: 03.65.Vf, 03.67.Lx, 76.30.Mi

Topological numbers were first introduced by Dirac to
justify the quantization of electric charge [1], and later
developed into a theory of magnetic monopoles as topo-
logical defects of a gauge field [2]. An amazing fact is that
fundamental quantized entities may be deduced from a
continuum theory [3]. Later on, topological numbers
were used to characterize the quantum Hall effect [4, 5] in
terms of transition between topological phases [6]. Since
the topological number in quantum Hall systems is di-
rectly proportional to the resistance in transport experi-
ment, its robustness against local perturbations enables
a practical standard for electrical resistance [4]. In the
past few years, more topological materials have been dis-
covered, including topological insulators[7, 8], topological
superconductor[9, 10], and etc.

Developing robust techniques to probe topological
numbers becomes an active research topic of both funda-
mental and practical importance. Recently, a generalized
method of extracting topological number by integrating
dynamic responses has been proposed [11]. Guided by
this theoretical proposal, experiments have successfully
measured the topological Chern number of different topo-
logical phases using superconducting circuits [12, 13].
However, their measurement of Chern number requires
integration over continuous parameter space, which may
not give an exactly discretized topological number. Dif-
ferent from the above integration approach, here we take
the simulation approach [14–16] and use a single NV cen-
ter in natural diamond at room temperature [17, 18]
to simulate a topological system. Moreover, we deploy
quantum algorithm of finding eigenvalues to map out the
dispersion relations [19, 20] and directly extract the topo-
logical number, which enables direct observation of the
simulated topological phase transition.

We consider the topological phase transition associated

with a semiconductor quantum wire with spin-orbital in-
teraction, coupled to s-wave superconductor and mag-
netic field [9, 21–23]. At the boundary between different
topological phases of the quantum wire, Majorana bound
states can be created as a promising candidate for topo-
logical quantum information processing [24]. The Hamil-
tonian of this system can be described using Nambu

spinor basis ψT =
(
ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑

)
:

HQW = pσzτz +
(
p2 − µ

)
τz + ∆τx +Bxσx, (1)

with the momentum p, chemical potential µ, pairing am-
plitude ∆, Zeeman energy Bx, and Pauli matrices σa
and τa acting in the spin and particle-hole sectors re-
spectively. Without loss of generality, we may assume
negative µ, non-negative Bx and ∆.

The system described by Eq. (1) has two different
topological phases determined by the relative strength of
{Bx, µ,∆}: (i) the trivial superconductivity phase (de-

noted by SC phase) when Bx <
√

∆2 + µ2, and (ii)
the topological superconductivity phase (denoted by TP

phase) when Bx >
√

∆2 + µ2. The phase diagram and
dispersion relations of different phases are illustrated in
Fig. 1(a). There are four energy bands for this system,
consisting of two particle bands and two hole bands. We
may label the energy bands as 1, 2, 3, 4 from bottom to
up as illustrated in Fig. 1(a). The gap between the 2nd
and 3rd bands will disappear during the phase transition.

To illustrate the distinct topological nature associated
with the SC and TP phases, we may consider the two low-
est energy (i.e. 1st and 2nd) eigenstates with momentum
p varying from 0 to ∞. First, it is easy to see that for
p→∞, the second term (τz) in Eq. (1) dominates, which
requires that the 1st and 2nd energy eigenstates be both
eigenstates of τz with eigenvalue −1 (i.e., both point-
ing to the same direction of the Bloch sphere associated



2

with τ , as illustrated in Fig. 1(b)). For p = 0, HQW =√
µ2 + ∆2τφ+Bxσx, where τφ = 1√

µ2+∆2
(−µτz + ∆τx).

The two lowest energy states are eigenstates of τφ with
same eigenvalue −1 (i.e., pointing in the same direction

in the τ -Bloch sphere) when
√
µ2 + ∆2 > Bx, or with

different eigenvalues ±1 (i.e., pointing in the opposite

directions τ -Bloch sphere) when
√
µ2 + ∆2 < Bx, as

illustrated in Fig. 1(b). Hence, we may introduce the
quantity M (p) = 〈~τ〉1 · 〈~τ〉2 to characterize the align-
ment in the τ -Bloch sphere for the bi-trajectories asso-
ciated with two lowest energy eigenstates with momen-
tum p, with 〈~τ〉j = 〈ψj |~τ |ψj〉 for the j-th lowest energy
eigenstate |ψj〉. The two types of topologically different
bi-trajectories (with M (p = 0) ·M (p→∞) = ±1) im-
ply the existence of distinct topological phases for the
system [25] . Mathematically, a topological number can
be computed as the sign product of the Pfaffian of anti-
symmetric matrices associated with momentum p = 0
and p→∞ [25]:

ν = sgn
(
µ2 + ∆2 −B2

x

)
. (2)

Since−Bx+
√
µ2 + ∆2 is always positive, the value of ν is

determined by the sign of the quantity −Bx+
√
µ2 + ∆2,

which is one of eigenenergies of HQW(p = 0). The
corresponding eigenstate can be represented by |Φ〉 =
|Φσ〉

⊗
|Φτ 〉, where |Φσ〉 and |Φτ 〉 are the eigenstates

of Bxσx and −µτz + ∆τx with eigenenergies −Bx and√
µ2 + ∆2 respectively. It is direct to deduce |Φσ〉 =

|←〉 = (|↑〉 − |↓〉)/
√

2 (|↑〉 and |↓〉 means spin up and
down) and |Φτ 〉 = α |p〉+ β |h〉 (|p〉 and |h〉 means parti-
cle and hole) which is dominated by |p〉 (i.e. |α|2 > |β|2).
Therefore, we can apply quantum algorithm of finding
eigenvalues [20] for the state |Φ〉 to directly obtain the

eigenenergy −Bx +
√
µ2 + ∆2, the sign of which is ex-

actly the topological number ν.
The QW Hamiltonian is simulated by a highly control-

lable two-qubit solid-state system, which is a color defect
named NV center in diamond consisting of a substitu-
tional nitrogen atom and an adjacent vacancy, as shown
in Fig. 2(a). The electrons around the defect form an
effective electron spin with a spin triplet ground state
(S = 1) and couple with the nearby 14N nuclear spin.
With an external magnetic field B0 along the N-V axis,
the Hamiltonian of the NV system is (~ = 1) [31]:

H0
NV = −γeB0Sz − γnB0Iz +DS2

z +QI2
z +ASzIz, (3)

where Sz and Iz are the spin operators of the electron
spin (spin-1) and the 14N nuclear spin (spin-1), respec-
tively. The electron and nuclear spins have gyromag-
netic ratios γe/2π = −28.03 GHz/T and γn/2π = 3.077
MHz/T, respectively. D/2π = 2.87 GHz is the ax-
ial zero-field splitting parameter for the electron spin,
Q/2π = −4.945 MHz is the quadrupole splitting of the
14N nuclear spin, and A/2π = −2.16 MHz is the hy-
perfine coupling constant. There are nine energy levels,
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FIG. 1. (Color online). Phase diagram and geometric illustra-
tion of the topologically distinct phases. (a) Phase diagram
of quantum wire system (calculated at Bx = 1.3). The green
line gives the boundary between SC phase and TP phase.
The energy dispersion relations of an SC point and a TP
point are plotted in the insets. (b) Geometric illustration
of topological difference between the SC and the TP phases.
In order to clearly visualize the two different trajectories as-
sociated with the 1st and 2nd energy eigenstates, the Bloch
spheres are turned along Z axis with p changes from 0 to ∞.
This rotational transformation doesn’t change the topological
properties of the bi-trajectories.

|1〉 , · · · , |9〉, as labeled in Fig. 2(b). The simulation is
performed in the subspace spanned by {|4〉 , |5〉 , |7〉 , |8〉},
associated with the electron spin states {me = 0,−1}
(encoding the pseudospin σ) and the nuclear spin states
{mn = 0, 1} (encoding the pseudospin τ). The NV spins
are radiated by two microwave (MW) pulses and two
radio-frequency (RF) pulses simultaneously, which se-
lectively drive the two electron-spin transitions and the
two nuclear-spin transitions respectively as illustrated in
Fig. 2(b). The frequencies of the pulses are all slightly
detuned from resonance with detuning δMW for the two
MW pulses and δRF for the two RF pulses. In the rotat-
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FIG. 2. (Color online). NV system and its correlation with
QW system. (a) Structure and energy levels of the NV cen-
ters. (b) Hyperfine structure of the coupling system with
NV electron spin and 14N nuclear spin. The 9 energy levels
are labeled as |1〉 to |9〉. The quantum simulation is carried
out in the subspace spanned by {|4〉 , |5〉 , |7〉 , |8〉}. Two MW
pulses (purple arrows) and two RF pulses (orange arrows) are
applied simultaneously to selectively drive the corresponding
electron and nuclear spin transitions. (c) Four basis states of
QW system corresponding to the four NV states inside the
square box.

ing frame, the Hamiltonian can be written as [25]

Hrot
NV =

ΩMW1 − ΩMW2

4
σxτz −

1

2
δRFτz

+
ΩMW1 + ΩMW2

4
σx +

ΩRF

2
τx −

1

2
δMWσz,

(4)

where ΩMW1,2 are the Rabi frequencies of the two elec-
tron spin transitions, ΩRF is Rabi frequency of the two
nuclear spin transitions that are set to the same value.
By choosing ΩMW1 = −ΩMW2 = ΩMW, the parameters
for the QW system and the NV spins can be identified as
the following: p ∼ ΩMW/2, p2−µ ∼ −δRF/2, ∆ ∼ ΩRF/2,
and Bx ∼ −δMW/2. Here the numerical values of the left
side are reduced by a factor of 11 to be coincide with the
typical values of NV parameters. Hence, HQW can be
exactly reproduced up to a Hadamard gate on the elec-
tron spin transforming the spin operators σx ↔ σz in
Hrot

NV. The Hadamard gate does not change the eigenval-
ues and can be fully compensated by modifying the basis
states in the experiment. As shown in Fig. 2(c), the four
states of the NV system can be mapped to QW system
one-to-one.

To obtain the energy-dispersion relations of QW and
the topological number, we deploy a quantum algo-
rithm of finding eigenvalues [20] to measure the eigen-
values of QW. The initial state of the NV spins is pre-
pared to (|6〉+ |Ψ〉) /

√
2, where |6〉 is used as a ref-

erence state and |Ψ〉 = |4〉 , |5〉 , |7〉 , or |8〉. In general
|Ψ〉 can be expanded by the QW eigenstates |Ψ〉 =∑4
j=1 cψ,j |φj〉 (HQW |φj〉 = Ej |φj〉). By applying the

simulating pulses for an adjustable period mτ (m ∈
N), |Ψ〉 evolves under the effective QW Hamiltonian

and accumulates phases ∝ Ejmτ with the state be-

coming
(
|6〉+

∑4
j=1 cψ,je

−i2πEjmτ |φj〉
)
/
√

2. It can be

transformed back into the representation of NV spin
states (|φj〉 =

∑
l=4,5,7,8 c

∗
l,j |l〉) and can be written as(

|6〉+
∑
l=4,5,7,8 al,m |l〉

)
/
√

2, with coefficients al,m =∑4
j=1 cψ,jc

∗
l,je
−i2πEjmτ which is a function of the QW

eigenvalues. The coefficient of |Ψ〉, i.e. aψ,m, can be mea-
sured in the experiment. Therefore, the energy spectrum
of the QW Hamiltonian can be obtained by Fourier trans-
forming of the time-domain signals {aψ,m}. There will
be at most four peaks in the energy spectrum with their
heights ∝ |cψ,j |2. Since the 1st and 4th energy bonds
are trivial, we only care about the 2nd and 3rd energy
bonds. As |c5(7),2|2 + |c5(7),3|2 � |c4(8),2|2 + |c4(8),3|2 in
the case of low momentum |p| � ∞ [25], |Ψ〉 is chosen to
be |5〉 or |7〉 in the experiment. However, the detection
of {a4,m} is easier than that of {a7,m}. By reversing the
sign of δMW and σz simultaneously in Eq. (4), one can
see that the Hamiltonian remains unchange. It means
|Ψ〉 can choose |4〉 instead of |7〉 by using δ

′

MW = −δMW.

The experimental realization was preformed on a
home-build set-up which has been described early [32].
The external statistic magnetic field was adjusted around
50 mT in order to polarize the 14N nuclear spin using
dynamic polarization technology [33]. The experimental
process is shown in Fig. 3(a). At first, the NV system
was prepared to |4〉 by a 4 µs laser pulse, then trans-
formed to the superposition state (|6〉+ |Ψ〉)/

√
2 during

the initialization process. (|Ψ〉 = |5〉 by the second row
RF pulses and |Ψ〉 = |4〉 by the third row RF pulses
shown in the brackets). After that, the two RF pulses
and the two MW pulses for simulating the QW Hamilto-
nian were applied simultaneously with time length mτ .
Finally, the state was rotated back to |4〉 with phase shift
θ and the photoluminescence was detected. As shown in
Fig.3(b), increasing the θ would lead to oscillating pho-
toluminescence. aψ,m could be obtained from the oscil-
lation amplitude and phase [25]. With different pulse
length mτ , we observed the time-domain evolution of
aψ,m (see Fig. 3(c)). The eigenvalue of the simulated
Hamiltonian can be acquired by the Fourier transform of
this time-domain signal (Fig. 3(d)).

Fig. 4(a) shows the energy dispersion relations ob-
tained in experiment for the two SC points (µ =
−1.6,−1.44), two TP points (µ = −1.14,−0.98), and
the critical point (µ = −1.29), given ∆ = 0.165 and
Bx = 1.3. The experimental results agree well with
the theoretical expectations except for the TP points.
The small energy gap in TP phase disappears due to the
fluctuating magnetic field from the surrounding 13C spin
bath, which induces phase errors on the NV electron spin.
The phase errors will cause not only peak broadening but
also peak shifting on the energy spectrum [25]. In addi-
tion, the pulses applied are not perfectly selective pulse,
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FIG. 3. (Color online). Simulation of the QW Hamiltonian
and detection of its eigenvalues. (a) The pulse scheme. The
superscript α (β) of the RF pulses indicates the nuclear spin
operation between |4〉 and |5〉 (|5〉 and |6〉). For the initializa-
tion and readout parts there are two pulse sequences, which
corresponds to the two initial state cases |Ψ〉 = |5〉 (the up-
per pulse sequence) and |4〉 (the lower bracketed pulse se-
quence), respectively. (b) Photoluminescence (P.L.) changes
versus different RF π/2 pulse phase θ for fixed evolution time
mτ . The points are the experimental data and the curve is
the sine function fit. Error bars indicate ±1 s.d. induced by
the photon shot noise. (c) Measurement of aψ,m with differ-
ent evolution time mτ . Black and red lines are the numerical
calculation results. (d) The energy spectrum of the simulated
Hamiltonian yielded from the Fourier transform of the time-
domain data in c. A Gaussian fit (the curve) is performed to
get the exact eigenenergy value.

the crosstalk between these pulses will also cause slightly
peak shift on the energy spectrum [25]. The red lines in
Fig. 4(a) give the numerical calculated energy dispersion
including these imperfections which nicely coincide with
the experimental results [25]. Further numerical simula-
tion suggests that the energy gap can be observed if a
NV sample with longer electron spin coherence time is
adopted [25, 34].

Even though the small energy gap of the TP phase is
difficult to resolve at the current experimental condition,
the topological number ν characterizing different topo-
logical phases can still be unambiguously extracted. As
mentioned earlier, ν can be directly determined by the
sign of the eigenenergy of |Φ〉. Since |Φ〉 is dominated by
|p,←〉 which is corresponding to |7〉 (see Fig. 2(b)(c)), the
eigenenergy of |Φ〉 can be reliably obtained from {a4,m}.
The sign of the eigenenergy can be calculated as

sgn(E) =

∫ +∞

−∞
sgn(E)p(E)dE

=

∫ +∞

−∞

sgn(E)√
2πσ

e−
(E−Ec)2

2σ2 dE,

(5)
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FIG. 4. (Color online). Energy dispersion relations and topo-
logical phase transition. (a) Energy dispersion relations with
different chemical potential µ. The points, light cyan lines,
and red lines represent the experimental, analytical, and nu-
merical results, respectively. Error bars given by fit error are
smaller than the symbols. As the energy bonds are symmet-
rical about p = 0, only the right half points (i.e. p > 0)
are actually measured in the experiment. (b) The measured
topological number ν versus the chemical potential µ, which
shows a topological phase transition happened near µ ≈ −1.3.
The cyan line is the theoretical prediction.

where Ec and σ are the fit center and the fit error of
the energy spectrum (see Fig. 3(d)). Fig. 4(b) gives a
clear illustrated of the topological phase transition by
measuring ν versus µ, where sharp change of ν occurs
near µ ≈ −1.3. The deviation of the critical point from
the theoretical expectation value µ = −1.29 is due to the
inaccuracy of measuring the very small eigenenergy (close
to 0) near the critical point for which even a slight shift
will change its sign. This deviation can be eliminated
by using a NV sample with longer coherence time [25].
Away from the critical point, the measured topological
number will only have a negligibly small deviation from
the exact value.

In conclusion, we have demonstrated quantum simula-
tion of a topological phase transition with a single NV
center at room temperature. Using quantum algorithm
of finding eigenvalues, we can not only obtain the dis-
persion relations, but also directly extract the topologi-
cal number of the system. Different from the scheme of
integration of dynamic responses [11–13], our approach
of direct measurement of topological number can unam-
biguously give a discretized value of ν over almost all pa-
rameter space except for a small region around the phase
transition. Even in the presence of large magnetical field
fluctuations that may smear out the energy gap in the
dispersion relations, the approach of direct extraction of
topological number remains robust and unambiguously
characterizes the topological phase transition.
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We may further improve our NV-center-based quan-
tum simulators by using isotopically purified diamond,
with significantly extended electron spin coherence time
[34]. Moreover, with reliable control of multiple spins
of the NV center [35], more complicated topological sys-
tems can be simulated. Utilizing entanglement can lead
to a scalable quantum simulator of NV centers [36]. In
addition, the quantum algorithm of finding eigenvalues
can be extremely efficient for multiple spins, with only a
polynomial time overhead with the number of spins [37].
Therefore, the NV-center-based quantum simulator is a
very promising platform, which will provide a powerful
tool to investigate novel quantum system.
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