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Abstract:  

We report the existence of Weyl points in a class of non-central symmetric metamaterials, which has 

time reversal symmetry, but does not have inversion symmetry due to chiral coupling between 

electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points 

depending on its non-local response. We also provide a physical realization of such metamaterial 

consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl 

points.  
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Weyl point is a topologically singular point in three-dimensional wave vector space. Initially studied 

in electronic systems [1-10], in recent years the physics of Weyl point has also been studied in 

classical wave systems such as electromagnetic[11-16] and acoustic systems[17,18]  Compared 

with the electronic systems, in classical wave systems one has more flexible control of the geometry, 

and the coherent transport properties are easier to measure due to the lack of electron-electron 

scattering. Therefore the classical wave systems complements the electronic systems in the 

demonstrations of various signatures of the Weyl points. In addition to the fundamental interest, the 

use of Weyl points may also lead to new capabilities for manipulating the propagation of 

electromagnetic and acoustic waves. 

 

Recently it was noted that here are two types of Weyl points, type-I and type-II, both are 

topologically nontrivial but exhibit very different physical properties. [10,19] Up to now, there has 

not been any exploration of type-II Weyl points in the electromagnetic systems. Here we report the 

existence of Weyl points in a class of non-central symmetric electromagnetic metamaterial which 

preserves time reversal symmetry. The breaking of inversion symmetry is achieved through chiral 

coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or 

type-II Weyl points depending on its non-local response.[20,21] We also provide a physical 

realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices 

which exhibits type-II Weyl points.  

 

The simplest model Hamiltonian which exhibits both types of Weyl points has the form 
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z x x y y z zH k k k kτ σ σ σ= + + +I , [10] where xk , yk  and zk  are the wave vectors along the x, y and z 

axes respectively, xσ , yσ  and zσ  are the Pauli matrices, I  is a 2 2×  identity matrix and τ  is 

a real constant. In this model, the group velocities of the two bands along the z direction are 1τ +  

and 1τ −  respectively, whereas along either the x or y directions, the group velocities for the two 

bands are 1+  and 1− , respectively. When ( )1,1τ ∈ − , the Hamiltonian exhibits a type-I Weyl point 

at . The constant frequency surface around  is an ellipsoid. Thus one can also refer to 

such a Weyl point as an elliptical Weyl point. On the other hand, when [ ]1,1τ ∉ − , the model 

Hamiltonian exhibits a type-II Weyl point. The constant frequency surface is now a hyperboloid. 

Therefore, we will also refer to such type-II Weyl point as a hyperbolic Weyl point. Both types of 

Weyl points are topologically non-trivial, but they exhibit very different physical properties. For 

example, while the density of state is zero at a type-I Weyl point, at a type-II Weyl point, the density 

of state in fact diverges for this model, similar to hyperbolic metamaterials [22] and can be rather 

large in the physical realization of this model. [10] 

 

Here we report a class of electromagnetic metamaterial that exhibits type-II Weyl points in the 

homogenization limit. None of the previous works on Weyl points in classical wave systems have 

reported the observation of a type-II Weyl point. In addition, most of the previous works concerning 

Weyl point in classical wave systems utilize either photonic or phononic crystals, where the 

periodicity plays a significant role. The exploration of topological properties in metamaterials as 

described by homogeneous effective material parameters [23,24] is of fundamental interest since the 

wavevector space of such meta-material is non-compact, which is in contrast with the wavevector 
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space of periodic systems which is always topologically compact. As a result, there are significant 

qualitative difference between the topological properties of meta-materials and photonic crystals as 

we will discuss in this paper.  

 

Since the Berry curvature vanishes in systems that possess both time reversal and inversion 

symmetries, [11] one needs to break either time-reversal or inversion symmetries to construct a 

topologically non-trivial object such as a Weyl point. While Refs. [23,24] considered topologically 

non-trivial metamaterials, their system did not exhibit Weyl points. The existence of Weyl points in 

homogeneous material without time-reversal symmetry has been reported very recently. [16] 

However, the system in Ref. [16] requires magneto-optical effects under a large static magnetic field, 

which is challenging to demonstrate experimentally. In this work, we show that Weyl points can be 

achieved in reciprocal meta-materials where the inversion symmetry is broken with chiral coupling 

between electric and magnetic fields. And we provide a physical construction of such meta-material 

with an array of helix structure that should be relatively straightforward to construct experimentally.  

 

Weyl point in homogeneous material 

To construct a meta-material supporting a Weyl point we start with a nonmagnetic ( 1rμ = ) 

anisotropic homogeneous material. The relative permittivity of this material is given by 

, where 2 21 /z pε ω ω= −  possesses Drude’s dispersion. Along the z-direction, the 

system supports three propagating modes, one of which is longitudinal and the other two are 
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transverse. The longitudinal mode is given by 0zε = , and hence the dispersion relation of this mode 

is flat with frequency of the mode fixed at ω = ω p  independent of the wavevector zk  along the z 

direction. The two transverse modes, having their electric field in the xy-plane, are influenced only 

by the permittivity of the transverse directions, i.e., tε . Since in this case the system is isotropic 

along the transverse directions, these two transverse modes are degenerate with their dispersion 

relation given by /z tckω ε= , where c  is the speed of light in vacuum. The dispersion relations 

of these three modes are shown in Fig. 1(a). They intersect at /z c p tk k cω ε= = . Therefore, the 

photon bands are three-fold degenerate at ( )0,0, ck k= . Fig. 1(b) shows the dispersion relation in 

the x yk k−  plane at z ck k= . Two of the three bands form a conical dispersion around the origin. 

There is also an additional band, which is quadratic in xk  and yk , passing through the conical 

point.  

 

Since a Weyl point is two-fold degenerate, we first need to break this triple degeneracy. Here we 

introduce anisotropy into the relative permittivity by setting  

,    (1)
 

where without loss of generality we assume ε x > ε y . Along the z-axis, the dispersion relation of the 

two transverse modes become (see Supplemental Material S-I [25]) 

/

/
z x

z y

ck

ck

ω ε

ω ε

⎧ =⎪
⎨

=⎪⎩ .  (2)
 

as shown schematically in Fig. 1(c). For subsequent discussion we refer to these two bands as bands 

1 and 2, respectively. Band 1 thus has a lower frequency compared with band 2 at a given zk . We 

refer to the longitudinal mode as band 3. By introducing the anisotropy, the triply degenerate point in 
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the isotropic case now breaks into two linear crossing points. Consider the crossing point between 

bands 1 and 3. We use ck  to represent the value of zk  at this crossing point. Fig. 1(d) shows the 

dispersion relation in the x yk k−  plane at z ck k= . The dispersion is linear along the x direction 

while quadratic along the y direction. While we have created a two-fold degenerate crossing point, 

this point is not a Weyl point. (The dispersion of Weyl point is linear along all the directions) This is 

expected, since the structure has both time-reversal and inversion symmetry.  

 

We break the inversion symmetry by introducing a chiral coupling term between the z-components 

of the electric and magnetic fields. [33-34]  The constitutive relation becomes 

0 0 0

0 0 0

r iD E
B Hi

ε ε ε μ γ
ε μ γ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

r rt t

r rt ,  (3) 

where 0ε  and 0μ  are the permittivity and permeability of the vacuum, respectively,  is as 

defined above in Eq. (1) and the only non-vanishing component of  is zzγ . For a time-reversal 

symmetric system,  and zzγ  are both real [35]. Consider again modes propagating along the 

z-direction, compared with the case where γ zz = 0, introducing zzγ  doesn’t affect the dispersions of 

the two transverse modes of bands 1 and 2. The only difference is that the dispersion of the 

longitudinal mode (i.e. band 3) is now determined by (see Supplemental Material S-I [25]) 

2 2 2 21 / 0z zz p zzε γ ω ω γ− = − − = . (4) 

From now on, we denote the frequency at which Eq. (4) is satisfied as pω′ . The dispersion relations 

for the three modes along the z direction are shown schematically in Fig. 1(e). Same as before, we 

use ck  to denote the value of the wave vector of the crossing point between bands 1 and 3. In Fig. 

1(f), we show the dispersion in the x yk k−  plane at z ck k= . The dispersion becomes linear along 
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all the directions indicating the crossing point is a Weyl point. (Plots of dispersion relations along 

other directions can be found in Supplemental Material Figs. S1(a)-(c) [25].) Comparing Figs. 1(d) 

and 1(f), we see that the introduction of the chiral coupling drastically changes the dispersion relation. 

In Fig. 1(d), without the chiral coupling, the dispersion is quadratic along the y direction, i.e., 

2
p ykω ω′− ∝  around the crossing point. Whereas with the chiral coupling the dispersion becomes 

p zz ykω ω γ′− ∝ , as shown in Fig. 1(f) (Detailed derivation of these results can be seen in 

Supplemental Material S-I [25])  

 

We can also obtain the effective Hamiltonian around this Weyl point as (See Supplemental Material 

S-II [25])  

( )eff
1

2 z zk x x x zz y y k z
x

H k kδ ε σ γ σ δ σ
ε

′ ′= − + +I . (5) 

where ′δ kz
= kz − kc . The charge of this Weyl point is given by ( )sgn zzγ− . The sign of charge of this 

Weyl point can also be verified numerically. (See Supplemental Material S-IV [25]) The other 

crossing point with a smaller zk  value in the positive half zk  space at /z y pk cμε ω′=  is also a 

Weyl point with charge given by ( )sgn zzγ−  (See Supplemental Material S-II [25]). Due to the 

time-reversal symmetry, the charges of the two Weyl points in the negative zk  space are also 

( )sgn zzγ− . Therefore, the total charge of the Weyl points in this system is not zero. From the result 

above we see that the topological behavior of a uniform system can be distinctively different from 

that of a periodic system, such as photonic and phononic crystal systems. For a periodic system, the 

wavevector space is compact. Consequently, the total charge of all the Weyl points inside the first 

Brillouin zone must vanish.[36] On the other hand, for a uniform system, the wavevector space is not 
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compact, and there is no longer such a constraint on the total charge.  

 

There exist many other choices of effective parameters for which the systems also exhibit Weyl 

points. For example, one can have Weyl point even when zzγ  is dispersive. (See Supplemental 

Material S-V [25]). Also one can have Weyl points in systems that are isotropic in the x-y plane, but 

have chiral coupling on all three directions. (See Supplemental Material S-VI [25]) The results here 

point to substantial opportunities for exploring Weyl point physics in a wide range of reciprocal 

chiral meta-materials.  

 

 

Type of Weyl Points and Relation with Nonlocal Effect 

In the system above, one of the two bands forming the Weyl point is flat along the z-direction. The 

system therefore lays at the boundary that separates the phase spaces of systems exhibiting type-I 

and type-II Weyl points. Starting from the system discussed above, one can generate either type-I or 

II Weyl point using non-local effect that is widely known in meta-materials. [20,21] As an illustration, 

we assume a non-local zε  that depends only on zk :  

2 2 2 21 /z p zz zkε ω ω γ α′= − + + , (6) 

where we do a Taylor expansion in terms of zk  and keep the lowest order in zk  as allowed by 

time-reversal symmetry. The inclusion of higher order terms in the Taylor expansion typically only 

serves to shift the frequency of the Weyl point without affecting the physics here. All other 
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parameters are the same as in Eqs. (1) and (3). When 0.5 0α = > , the dispersion of the longitudinal 

mode tilts downward generating a type-I Weyl point. [Fig. 2(a)] Whereas when 0.1 0α = − < , the 

dispersion tilts upward, generating a type-II Weyl points [Fig. 2(d)] Figs. 2(b) and 2(e) [2(c) and 2(f)] 

show the band dispersion in the x yk k−  ( y zk k− ) plane at z ck k=  ( 0xk = ) for 0.5α =  and 

0.1α = − , respectively. They all possess conical structures around the crossing points between band 1 

and band 3. Dispersion along other directions can be found in Supplemental Material Fig. S1 [25]. 

We also note that while the type of the Weyl point changes, the charge of a Weyl point does not 

change as α varies. 

 

Physical Realization 

As a physical realization of the dielectric function as discussed above, we consider the structure 

shown in the inset in Fig. 3(a) consisting of a square lattice array of metal wires each forming an 

elliptical helix. The axis of the metallic wire helix is along the z-axis. The wires provide both an 

effective plasmonic response as well as nonlocality for zε . The elliptical shape of the helix provides 

an anisotropic dielectric response in the x-y plane. Such a system in fact has magnetic response as 

well with an anisotropic permeability tensor, [37] which however doesn’t affect the existence of a 

Weyl point in this system. (see Supplemental Material S-I [25]). In Figs. 3(a) and 3(b), the circles 

show the band structures of such an elliptical helix array with full wave simulation. Fig. 3(a) shows 

the dispersion along the z direction, which consists of two quasi-transverse modes (red) and one 

quasi-longitudinal mode (blue). The quasi-longitudinal mode tilts upward and hence the Weyl points 
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here are of type-II. Fig. 3(b) shows the dispersion along the x and y directions around the crossing 

point between band 1 and band 3. The band dispersions are linear along all three directions around 

the crossing point. With the parameters chosen for the structure in Fig. 3, the frequency of the Weyl 

points here are around 0.1c/a, where a is the lattice constant and c is the speed of light in vacuum, 

and hence the Weyl points lie in the homogenization limit where the meta-material can be well 

described by homogenous effective parameters. Indeed, we can also calculate the band dispersions 

with the effective medium theory, [37, 38] (The details of this effective medium theory are provided 

in the Supplemental Material S-V [25]) and the results are also shown in Figs. 3(a) and (b) with solid 

lines. The band dispersions obtained through effective medium theory agrees well with the full wave 

simulation indicating that this system can be well-described with those effective parameters.  

 

 

When a bulk system with Weyl points is truncated, if the Weyl points are located at different 

positions in the surface Brillouin zone, the surface supports one-way surface states that connect these 

Weyl points. Real metamaterials are in fact periodic structures. For a periodic structure, it is known 

that the total charge of the Weyl point must vanishes. [36] In the metamaterial system, since in the 

homogenization region (i.e. the low frequency region), the total charge does not vanish, as we have 

shown before, the corresponding Weyl points with opposite charges must lie outside the 

homogenization region with higher frequencies. Therefore, the surface states should span a much 

wider range of frequency, as compared to typical photonic crystal system. 
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Summary and outlook 

Our work here points to the possibility for the exploration of Weyl point physics in reciprocal 

meta-material systems. The relatively simple design of the structures can certainly be achieved in the 

microwave frequency range. Moreover, chiral meta-material has been constructed in the mid 

infra-red wavelength range where the properties of metals can be reasonably approximated by the 

perfect electric conductor model that we assume here [39, 40], thus the physics here can be realized 

in the optical frequency regime as well. Given the importance of meta-material in both fundamental 

physics and in device applications, the introduction of Weyl point physics into meta-material will 

significantly enrich the fields of topological physics as well as metamaterials, leading to new 

potentials for the manipulation of electromagnetic and optical waves.  
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Figures 

  
FIG. 1 (color online). (a) The dispersion along the z direction of a system with the relative 

permittivity given by  where 2 21 /z pε ω ω= − . The bold red line represents the 

dispersions of two degenerate transverse modes, and the blue horizontal line represents the 

dispersion of the longitudinal mode. ck  labels the value of zk  at the crossing point. (b) The 

dispersion in the x yk k−  plane at z ck k= . (c) When anisotropy is introduced and 

 where x yε ε≠ , the degeneracy between two transverse modes in (a) lifted. (d) 
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The dispersion around one of the crossing points in (c) at z ck k= . The dispersion is linear along the 

x direction and quadratic along the y direction. (e) The introducing of chiral coupling along the z 
direction shifts the frequency of the longitudinal mode. (f) The dispersion around the crossing point 

in (e) at z ck k= . (e) and (f) show that the dispersion is linear along all the directions indicating the 

crossing point is a Weyl point. Band numbers are labeled in (c). The parameters used are ω p = 1, 

2 21 /z pε ω ω= −  and 1.8tε =  for (b); ω p = 1 , 2 21 /z pε ω ω= − , 2xε =  and 1.7yε =  for (d); 

′ω p = 1, 2xε = , 1.7yε = , 2 2 21 /z p zzε ω ω γ′= − + , and 0.8zzγ =  for (f).  
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FIG. 2 (color online). (a) and (d) show the dispersion along the z direction, where the red lines and 
blue line correspond to the transverse modes and longitudinal mode, respectively. (b) and (e) show 

the dispersions in the x yk k−  plane at z ck k= . (c) and (f) show the dispersions in the y zk k−  plane 

at 0xk = . (b), (c), (e) and (f) all possess conical dispersion. The difference between type-I and 

type-II Weyl points can be seen by comparing (c) and (f). The parameters used here are ′ω p = 1, 

2xε = , 1.7yε =  and 2 2 2 21 /z p zz zkε ω ω γ α′= − + + . 0.5α = , 1.0zzγ =  for (a), (b) and (c), and 

0.1α = − , 0.71zzγ =  for (d), (e) and (f). The Weyl points is of type-I when 0α >  and type-II when 

0α < . Here ω  is in unit of pω′ , and the corresponding wave vectors are in unit of /p cω′ , where 

c  is the speed of light in the vacuum. 
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FIG. 3 (color online). (a) The band structure along the z direction with structure shown in the inset. 
The length of one pitch, the radius of the metallic wire, the long axis and the short axis of the helix 

are given by 0.2p a= , 0.01aδ = , 0.2x aρ =  and 0.1y aρ = , respectively, where a  is the lattice 

constant. (b) The band structure along the x and y directions around the crossing point with larger zk  

as indicated by a black arrow in (a). In (a) and (b), lines are calculated with effective medium theory 
and circles are calculated with Comsol 5.1 and the metal is assumed to be a perfect electric conductor. 
The bands are linear along all the directions near the crossing point (indicated by the black arrow in 

(a)). The slopes of the two bands have the same sign along zk  , but have opposite signs along xk  

and yk , indicating that it is a type-II Weyl point.  

 
 


