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We theoretically investigate the localization mechanism of the quantum anomalous Hall effect
(QAHE) in the presence of spin-flip disorders. We show that the QAHE keeps quantized at weak
disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally
goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that
at the charge neutrality point although the QAHE is most robust against disorders, the correspond-
ing metallic phase is much easier to be localized into the Anderson insulating phase due to the
interchange of Berry curvatures carried respectively by the conduction and valence bands. At the
end, we provide a phenomenological picture related to the topological charges to better understand
the underlying physical origin of the QAHE Anderson localization.

PACS numbers: 73.43.Cd, 73.43.-f, 73.23.-b, 71.30.+h.

Introduction.— Anderson localization [1] is one of the
most striking transport phenomena in condensed matter
physics. It describes the absence of diffusion of waves due
to the severe interference from strong disorders. Based on
the scaling theory of localization length, it is known that
two-dimensional electrons can be immediately driven into
the Anderson insulating phase even in the presence of
extremely weak disorders [2]. However, if either the time-
reversal symmetry is broken by magnetic field or the spin-
rotational symmetry is broken by spin-orbit couplings, a
metal-insulator phase transition occurs [3–7], indicating
the emergence of a metallic phase at weak disorders.

When the applied magnetic field is strong enough,
the resulting Landau-level quantization gives rise to
the formation of the conventional quantum Hall effect
(QHE) [8, 9], manifesting itself as vanishing longitudi-
nal conductance but quantized Hall conductance. In the
presence of disorders, there were several different local-
ization mechanisms proposed for the quantum Hall ef-
fect, e.g., a levitation theory where extended levels float
up to infinity at weak magnetic field limit was used to
show that the phase transition can only occur in nearest-
neighbor quantum Hall plateaus, indicating that a high
QHE state can not directly transit into an insulator [10],
while Sheng et al. suggested that quantum Hall plateaus
are destroyed in a one-by-one order from high to low
energies without floating up in energy [11]. When inter-
band mixing effect of opposite chiralities is considered,
metallic phase may exist between adjacent quantum Hall

plateaus or between QHE and Anderson insulator [12].
The successful exfoliation of monolayer graphene [13] and
realization of Z2 topological insulators [14, 15] (both har-
bour linear-Dirac dispersions) inspire a broad exploration
of the quantum anomalous Hall effect (QAHE) in related
materials [16–29] and finally lead to the first realization of
QAHE in magnetically doped topological insulators [30–
33], where the QAHE exhibits the same transport prop-
erties as those in the conventional QHE. The formation
of QAHE usually originates from the synergetic interac-
tion between spin-orbit coupling and intrinsic magneti-
zation. Therefore, a natural and fundamental question
arises considering that both the time-reversal and spin-
rotational symmetries are broken: how will the QAHE
be localized in the presence of strong disorders?

In this Letter, we first investigate the transport proper-
ties of the chiral edge states of the QAHE in the presence
of both nonmagnetic and spin-flip disorders. In the non-
magnetic case, for Fermi-levels lying inside the band gap,
the conductance is quantized at weak disorders, gradually
decreases at moderate disorders, and finally vanishes at
even larger disorders, with the conductance at the charge
neutrality point EF/t = 0.0 being always larger than
that at any other Fermi-level. However, in the spin-flip
case, when disorder strength exceeds a critical value, the
quantized conductance at EF/t = 0.0 abruptly vanishes,
while the conductances at other energies remain finite at
even larger disorders. We then show that this anoma-
lous transport phenomenon in a mesoscopic system can
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be attributed to the interchange of Berry curvatures car-
ried respectively by the conduction and valence bands in
the corresponding bulk system. Based on the scaling the-
ory of localization length, we provide a phase diagram to
show the insulator-metal and metal-insulator phase tran-
sitions. At the end, a phenomalogical picture is given to
understand the physical origin of phase transitions from
spin-texture evolutions.
Anomalous Edge-State Transport.— We start from a

prototypical system with single massive Dirac fermion.
Its corresponding tight-binding Hamiltonian in square
lattices can be written as [34, 35]:

H = −
ivF
2

∑
i

(c†iσxci+x̂ + c†iσyci+ŷ + h.c.)

+
t

2

∑
〈ij〉

c†iσzcj + λ
∑
〈i〉

c†iσzci, (1)

where vF and λ are respectively Fermi velocity and mass
amplitude. t measures the nearest-neighbor hopping
energy. The first term can be considered as a spin-
orbit coupling term to form the Dirac dispersion. The
second and third terms are respectively spin-dependent
and constant mass terms, and their competition deter-
mines the Chern number of the system. In our con-
sideration, we choose vF = t and λ = 1.2t to realize
the QAHE, giving rise to a quantized Hall conductance
of σxy = −e2/h. Anderson disorders are included as

HD =
∑

iw
0
i c

†
ici + wx

i c
†
iσxci + wy

i c
†
iσyci, where the first

term is the on-site nonmagnetic disorder, and the last
two terms describe spin-flip disorders. w0,x,y are uni-
formly distributed in an interval of [-W/2, W/2], with
W characterizing the disorder strength.
Inset of Fig. 1a plots the band structure of a nanorib-

bon of the QAHE system, where the ribbon width is set
to be N = 80a (a is the lattice constant). The gapless
edge modes appear inside the bulk gap of (−0.8t, 0.8t)
and exhibit chiral propagating characteristic [36, 37],
with the red and blue respectively indicating the counter-
propagating edge modes along opposite boundaries. To
explore the disorder effects on the QAHE, we use a two-
terminal mesoscopic setup to study the averaged con-
ductance 〈G〉 as a function of W . The disorders are only
added in the central N × N scattering region connect-
ing with left and right semi-infinite terminals. Using the
Landauer-Büttiker formula [38], the conductance G can
be evaluated as:

G =
e2

h
Tr[ΓLG

rΓRG
a], (2)

where Gr,a are respectively the retarded and advanced
Green’s functions of the disordered region, and ΓL,R are
the line-width functions coupling left and right terminals
with the central disordered region.
Since the conduction and valence bands are symmet-

ric about EF/t = 0.0, we choose five representative Fermi

FIG. 1: (color online) Averaged conductance 〈G〉 as a func-
tion of W for different Fermi energies inside the bulk gap.
The system width is set to be N = 80a. (a) and (b): For
nonmagnetic and spin-flip disorders, respectively. Over 3000
samples are collected for each point. Inset: Band structure of
a nanoribbon displaying the gapless chiral edge states inside
the bulk gap ∆.

energies in our consideration, i.e., EF/t=0.0, 0.2, 0.4, 0.6,
and 0.8. Figure 1a displays the averaged conductance as
a function of W in the nonmagnetic case. At weak disor-
ders, the conductance keeps quantized at 〈G〉 = 1.0e2/h.
When W > 2, all conductances begin to gradually de-
crease with the increase of W . In particular, the con-
ductance at EF/t = 0.0 is always larger than those at
other energies, which is rather reasonable because it re-
quires much more energy to be scattered into the bulk.
However, in the spin-flip case, the situation changes com-
pletely, with anomalous transport phenomena being ob-
served (See Fig. 1b). For example, at EF/t = 0.0 the
conductance keeps quantized until the disorder reaches a
critical strengthWC/t ≈ 3.2, and abruptly vanishes when
W > WC. While for other energies, the quantization of
the conductance can be destroyed by weak disorders (i.e.,
the farther away from EF/t = 0.0, the easier to be de-
stroyed). However, the conductance becomes finite in a
wide range of disorder strength. In contrast to the non-
magnetic disorder case, at strong disorders W > WC,
the closer of the Fermi energy to EF/t = 0.0, the eas-
ier of the quantization of conductance being destroyed.
To uncover the fundamental physics that results in these
anomalous transport properties, we analyze the Berry
curvature density in the corresponding bulk system that
reflects the nature of the anomalous Hall effect [39], and
employ the finite-size scaling theory [2] to determine the
disorder-induced phase transitions.

Berry Curvature Analysis.— In our system that fea-
tures a single gapped Dirac cone at low energy, it is
known that the Berry curvature has a peaked distribution
about the cone center, contributing to a half-quantized
Hall conductance, i.e., σxy = − 1

2
sgn(λ)e2/h, which is

impossible in a non-interacting electronic system. There-
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FIG. 2: (color online) (a1)-(h1): Evolution of averaged Berry
curvature density Ω as a function of energy E for different
disorder strengths W . The green and pink areas highlight
the exchange process of Berry curvatures carried respectively
by conduction and valence bands. (a2)-(h2): Corresponding
averaged Hall conductance σxy as a function of energy E. The
supercell is set to be 50a×50a. Over 30 samples are collected
for each point.

fore, the remaining bands must contribute another half-
quantized Hall conductance as that from the massive
Dirac bands in our considerations [41]. All these are well
defined in the absence of disorder, since the Berry curva-
ture from the “massive Dirac bands” is peaked in k-space
and can be separated from the “remaining bands”. How-
ever, when disorder is introduced, one can no longer visu-
alize the k-space Berry curvature distribution. Instead,
we track its distribution in energy by using the disorder
averaged Berry curvature and Hall conductance, which
can be respectively expressed as [40]:

Ωα = −
∑
β 6=α

2Im〈α|vx|β〉〈β|vy |α〉

(ωβ − ωα)2
, (3)

σxy = −
e2

h

∫
dε〈Ω(ε)〉f(ε) (4)

where |α〉 indicates the eigenenergy of |~ωα〉 in the dis-

FIG. 3: (color online) (a) Normalized localization length ξ/L
as a function of the disorder strength W at EF = 0.0 calcu-
lated on quasi-one dimensional bars, with a length of 2× 106

and different widths of L = 32, 48, 64, and 96. Wc1 = 3.18
and Wc2 = 3.23 are two critical points. (b) Phase diagram of
in (E, W ) plane.

ordered system, and Ω(ε) = 1
ATr[Ω̂δ(ε − Ĥ)] describes

the Berry curvature density in the energy spectrum with
Ω̂ being the Berry curvature operatorΩ̂ =

∑
α Ωα|α〉〈α|,

and A is the area of the two-dimensional system.

Figure 2 displays the averaged Berry curvature den-
sity and Hall conductance as functions of energy E/t for
different spin-flip disorder strengths W/t=0.0, 0.2, 1.0,
1.8, 2.6, 3.0, 3.4, and 4.2. At W/t = 0.0, although it
is impossible to draw a precise separation between the
massive Dirac band and the remaining band contribu-
tions, by carefully choosing the parameters as used in
our consideration we make the two contribution peaks
separated in either valence or conduction bands (see
Fig. 2a1), which can be generally identified as the contri-
butions from both the massive Dirac bands (labelled as
pv,cD ) and the remaining bands (labelled as pv,cR ), where
v/c denotes valence/conduction bands and D/R denotes
the Dirac/remaining bands. For energies inside the gap,
Ω(E) = 0, and σxy = −e2/h. When a weak disorder is
applied, the bulk gap is nearly unaffected, but the peak
pv,cD from the Dirac bands becomes rather singular (See
Fig. 2a2), agreeing with the previous finding reported
in Ref. [40]. At moderate disorder strengths as shown
in Figs. 2b-2e, one can see that: 1) The peaks pv,cD be-
come slightly broadened and move towards each other
between conduction and valence bands in an attractive
manner, shrinking the bulk gap; 2) The green and pink
colored areas covered by the peaks pv,cD are approximately
constants, corresponding to σxy ≈ ±0.5e2/h; and 3) the
peaks pv,cR also broaden but move farther away from each
other in a repulsive manner. Note that, before the bulk
gap closing, the quantized Hall conductance at EF = 0
is most robust against disorders.

When the disorder strength approaches certain critical
value, i.e., W/t ≈ 3.0, the Berry curvatures from both
valence and conduction bands become overlapped, clos-
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FIG. 4: (color online) Schematic of the evolution of topo-
logical charges carried by the spin-textures (i.e., Skyrmions
and Merons) of the valence and conduction bands. (a) In
the absence of disorders, valence/conduction bands carry a
Skyrmion with a topological charge of Qv = −1/Qc = +1. (b)
At weak disorders, the states near the equator of Skyrmions
scatter strongly to divide Skyrmions into Merons that carry
half-integer topological charges and are labelled as “A”, “B”,
“C”, and “D”. (c) By further increasing disorder strength,
Merons A and D respectively move upwards and downwards,
while Merons B and C move towards each other. (d) At even
stronger disorders, Merons B and C make an exchange to can-
cel out the topological charges in the new valence (conduction)
bands by combing Merons A and C (B and D).

ing the bulk gap as displayed in Fig. 2f. We find that the
Hall conductance at E/t = 0 suddenly increases, faster
than those at other energies. At even stronger disor-
ders, e.g., W/t = 4.2, one can see that the two peaks
pv,cD from the conduction and valence bands make an
interchange, accompanying with a bulk gap reopening
that is also confirmed from the band structure calcula-
tion [35]. When the bulk gap is reopened, the Hall con-
ductance becomes exactly zero, i.e., σxy = 0. Based on
our integration, the Berry curvatures in the green/pink-
colored regions contribute to a Hall conductance of about
−/ + 0.5e2/h. Therefore, we conclude that it is the
interchange of Berry curvatures carried respectively by
the massive Dirac bands from the conduction and va-
lence bands that leads to the compensation of the Berry
curvatures carried by the remaining bands, which is a
necessary condition to eliminate the net Berry curva-
ture integration below the Fermi level and finally lead to
the Anderson localization. By considering various sys-
tem parameters, we show that it is universal to achieve
the anomalous electronic transport and Berry-curvature
interchange induced metallic phase for QAHE systems
subjected to spin-flip disorders [35]. We believe that the
Berry curvature interchange should be closely related to
the anomalous transport properties displayed in Fig. 1b.

Phase Transitions.— In order to provide a convinc-
ing picture on the phase transitions from the QAHE to
Anderson insulator, it is rewarding to employ the finite-
size scaling approach to determine the phase bound-

aries. Based on the well-established transfer-matrix
method [42, 43], we numerically calculate the localization
length ξ on a quasi-one dimensional bar of essentially in-
finite length (2× 106) and finite width L. The periodical
condition is applied to eliminate the possible edge-state
transport. As an example, in Fig. 3a we plot the nor-
malized localization length ξ/L as a function of W/t at
EF/t = 0.0 for different widths L=32, 48, 64, and 96.
One can find that there are two fixed points, Wc1 = 3.18
and Wc2 = 3.23. At W < Wc1, ξ/L decreases with the
increase of L, indicating that ξ/L will converge to zero
when L → ∞, signaling a localized insulating phase, i.e.,
the QAHE insulating phase. At W ∈ [Wc1,Wc2], ξ/L
increases with the increase of L, indicating that ξ/L will
diverge when L → ∞, signaling a delocalized metallic
phase. At W > Wc2, ξ/L behaves similar as that in the
weak disorder case, meaning that it enters a localized in-
sulating phase (Anderson insulator). Therefore, the fixed
points Wc1 and Wc2 are two critical disorder strengths
for the insulator-metal and metal-insulator phase transi-
tions, respectively.

After obtaining the two critical disorder strengths Wc1

and Wc2 for other representing Fermi energies inside the
bulk gap, a phase diagram in the (E, W ) plane can be de-
termined (Fig. 3b), which is also confirmed from the con-
ductance calculation [35]. At weak disorders, the QAHE
phase is robust against disorders, and the charge neutral-
ity point EF/t = 0.0 is most robust. However, at even
stronger disorders, it is the charge neutrality point that
first enters the Anderson insulating phase from a delo-
calized metallic phase. This anomalous feature of broad-
ening the metallic phase associated with the Fermi-level
shift from EF/t = 0.0 is exactly the fundamental phys-
ical origin of the anomalous findings in the above two-
terminal conductance calculation (See Fig. 1b) and Hall
conductance calculation in a finite-sized supercell (See
Figs. 2f2 and 2g2).

A Phenomenological Picture.— We now provide a phe-
nomenological picture to better explain the above ob-
served anomalous transport findings and unusual phase
diagram. From the topological point of view, the topo-
logical order of the quantized Hall conductance can
also be described by using the concept of topological
charge, which is dependent on the spin-textures [44].
In our consideration, the quantized Hall conductance of
σxy = −e2/h is analogous to a Skyrmion, where the
valence/conduction bands carry a topological charge of
Qv/c = −/ + 1, which can be reflected from the spin-
textures as schematically displayed in Fig. 4a: spins
pointing outwards for Qc = +1 (i.e., spins point upwards
at the north pole, downwards at the south pole, and
in-plane at the equator), but spins pointing inwards for
Qv = −1 (i.e., spins point downwards at the north pole,
upwards at the south pole, and in-plane at the equator).
When the spin-flip disorders are applied, the electronic
states near the equator scatter strongly due to the co-
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existence of different spins, while those at the south and
north pole are nearly inactive because of the absence of
allowed states with opposite spin. This results in the sep-
aration of Skyrmions into Merons (labelled as “A”, “B”,
“C”, and “D”) with ±1/2 topological charges as labelled
in Fig. 4b. With the increase of disorder strength, Merons
“B” and “C” move towards each other in an attractive
manner, while Merons “A” and “D” move in a repulsive
manner as displayed in Fig. 4c. Note that, at certain
disorder strength, Merons “B” and “C” become spatially
overlapped, but no scattering occurs because it is not
allowed to scatter between same spins, which explains
the formation of the Berry-curvature mediated metallic
phase in Fig. 3. At even larger disorder strength, Merons
“B” and “C” move respectively into the valence and con-
duction bands. At this point, the topological charges car-
ried by the occupied valence bands becomes zero, leading
to the vanishing of Hall conductance and the occurrence
of Anderson localization, which can clearly explain the
sudden vanishing of the two-terminal conductance and
why the charge neutrality point enters the Anderson in-
sulator first. For high-Chern-number QAHE systems, the
Meron exchange picture would be more complicated and
highly depend on the model details [35], which is out of
scope of the current work.

Conclusions.— In summary, we theoretically study the
disorder effect of the QAHE system in the presence of
spin-flip disorders. We show that the system first tran-
sitions into a metallic phase from the QAHE insulating
phase at moderate disorder strengths, and then further
transitions into the Anderson insulating phase. Counter-
intuitively, we find that it is the charge neutrality point
(i.e., EF/t = 0), at which the quantized Hall conduc-
tance is most robust against weak disorders but the cor-
responding metallic phase is easiest to be completely lo-
calized into the Anderson insulating phase. By analyzing
the Berry curvature evolution, we find that the resulting
anomalous electronic transport and Anderson localiza-
tion at the charge neutrality point originate from the
interchange of Berry curvatures carried respectively by
the valence and conduction bands. The finite-size local-
ization length scaling approach is used to determine the
phase boundaries separating the three phases: QAHE in-
sulating phase, Berry-curvature mediated metallic phase,
and the Anderson insulating phase. At the end, a phe-
nomenological picture from the topological charges is
given to explain the anomalous electronic transport and
Anderson localization at the charge neutrality point.
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