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We investigate the non-classical states of light that emerge in a microwave resonator coupled
to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive
configurations, we find that the resonator approaches a thermal state at the temperature of the
surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away
from these thermal regions we find regions of gain and loss, where the system can lase, or regions
where the DQD acts as a single-photon source. These effects are observable in current devices and
have broad utility for quantum optics with microwave photons.

When a physical system is subject to periodic driving,
the usual notions of equilibrium thermodynamics have
to be revisited. For a closed system, the second law of
thermodynamics suggests it approaches an infinite tem-
perature state; however, there are dramatic exceptions to
this behavior in integrable systems [1–7] and the recently
discovered class of many-body localized phases [8–12].
For open systems, where the periodically driven system
is coupled to a fixed temperature bath, the system nat-
urally reaches a steady state that evolves with the same
periodicity as the drive; however, unlike in thermal equi-
librium, no general classification scheme is believed to
exist for such states [13–19].

Solid-state qubits are a versatile platform to study
strongly driven quantum systems [20–28]. In the case of
gate-defined quantum dots and superconducting qubits,
the typical energy splittings are small enough that the
drive amplitude can be much larger than the qubit split-
ting [22–25]. When superconducting qubits are inte-
grated in a circuit quantum electrodynamics (cQED) ar-
chitecture and strongly driven, they can be used to gen-
erate non-classical states of light [29, 30], lasing [31], and
thermal states of light with a chemical potential [32]. For
cQED with quantum dots, theoretical and experimental
work has focused on weak driving or incoherent tunnel-
ing through the leads [19, 33–37]; however, the effect of
strong driving remains unexplored. For similar drive pa-
rameters, we expect qualitatively different behavior from
superconducting qubits because of the strong electron-
phonon coupling in quantum dots [38–40].

In this Letter, we investigate a microwave resonator in-
teracting with a periodically driven electron in a double
quantum dot (DQD). The DQD is coupled to a fixed tem-
perature phonon bath. We investigate the non-classical
states of light that emerge in the long time limit. For cer-
tain drive configurations, the resonator field approaches
a thermal state at the phonon temperature with a chem-
ical potential given by a harmonic of the drive frequency.
Away from these thermal regions, we find regions where
the system begins lasing or acts as a single-photon source.

We take the DQD to be configured near the charge

transition between the states |L〉 and |R〉 with one elec-
tron in either the left or right dot, respectively. This pair
of states has a large electric dipole moment that couples
to the electric field in a nearby microwave resonator, as
well as acoustic phonons in the semiconductor host [see
Fig. 1(a)] [33–35]. In this work, we focus on the case
of an InAs nanowire DQD, as realized in recent experi-
ments [34]; however, many of the results apply to other
DQD-cQED systems under study [35, 37].

We consider periodic driving of the level detuning
ε(t) = ε0 +A cosωt, where ε0 is an offset detuning and A
and ω are the amplitude and frequency of the drive. In
a process reminiscent of Sisyphus from Greek mythology
[31], the DQD is continually excited by the drive, only to
relax to the ground state via phonon and photon emis-
sion [see Fig. 1(b)]. For low driving amplitudes, A � ω
with a drive that is near resonant with the DQD, the pho-
ton dynamics are dominated by resonance fluorescence,
where the DQD acts as a single-photon source [41, 42].

When A & ~ω, the situation changes dramatically be-
cause the two-level nature of the DQD leads to a series
of harmonics (denoted by index n) of the drive frequency
up to nmax ≈ A/~ω [43, 44]. These sidebands give rise to
a parametric “time-varying” coupling between resonator
photons and phonons mediated by the DQD. In the ab-
sence of other processes, such a parametric coupling of
photons to a thermal bath can lead to thermal light with
a chemical potential by equilibrating the photons with
low frequency bath modes [32].

Solving for the long-time dynamics using Floquet anal-
ysis, we uncover several regimes where the resonator
photons approach a thermal state in the strongly-driven
limit. To understand this process, note that, in the Flo-
quet basis, the time-dependent problem is mapped to
a time-independent problem with an energy spectrum
that is only well-defined modulo ~ω [45]. In the folded
spectrum, the resonator frequency ωc is mapped onto
δ = ωc − ncω, where ncω is the closest harmonic to ωc.
The key insight is that near the resonances δ = 0, the
photon dynamics become dominated by Raman scatter-
ing events in which the DQD absorbs nc drive quanta



2

−100 −50 0 50 100

−10

0

10

Detuning       (µeV)

Sp
ec

tru
m

 (G
H

z)

�

Photon

Phonon

✏ (µeV)�

✏(t)

Sisyphus Thermalization

Resonance
Fluorescence

E
(µ

eV
)

2tc

gc

(a)

|Li |Ri

�k

t

2⇡/k

Photons

Phonons Substrate

✏(t)

(b)

DQD

A � ~!

A ⌧ ~!

40

�40
! ⇡ 2tc/~

FIG. 1: (a) A microwave resonator is coupled to charge
states in a DQD. The DQD is subject to periodic driving
and strongly coupled to acoustic phonons, which are held at
a fixed temperature. (b) Energy level diagram of the DQD
with tc = 20 µeV. For A � ~ω with ω ≈ 2tc/~, resonance
fluorescence of the DQD dominates, leading to antibunched
light. When A � ~ω, the phonon sideband dominates, lead-
ing to thermalization.

while simultaneously annihilating or creating a resontor
photon and a phonon at frequency |δ|. This effect is en-
hanced in InAs nanowires because the phonon spectral
density for piezoelectric coupling to the DQD J (ν) ∼ ν
for small ν, as compared to, e.g., GaAs DQDs where
J (ν) ∼ ν3 [46, 47]. In a process we refer to as “Sisyphus
thermalization,” these scattering events thermalize the
resonator with these low energy phonons, giving rise to
an effective chemical potential for the photons µ = ~ncω.
Away from these thermal regions, we find regions of gain
and loss, where the system can begin lasing [31], as well
as regimes more consistent with resonance fluorescence,
where the DQD acts as a single-photon source [41, 42].

Floquet Model – The Hamiltonian for the periodically
driven DQD takes the form

Hc(t) =
1

2

(
ε0 +A cosωt

)
σz + tcσx (1)

where σν are Pauli matrices operating in the {|L〉, |R〉}
orbital subspace, and tc is the tunnel coupling between
the dots. Including the resonator and phonons

H = Hc(t) + ~ωca†a+
∑

k

~ωka†kak + X̂σz, (2)

where ωk is the frequency of the kth phonon mode,
a(a†) and ak(a†k) are the bosonic photon and phonon

annihilation (creation) operators, respectively, X̂/~ =

gc(a + a†) +
∑
k λk(a†k + ak) contains the coupling gc

between the resonator and DQD, as well as the coupling
λk between the DQD and the phonons.

From Floquet theory [43, 45], we know that the evolu-
tion under such time-periodic Hamiltonians can be for-
mally represented using an infinite dimensional basis |m〉
for integers m. In this representation, H(t) is mapped to
a time-independent Hamiltonian HF by adding the term

~ωN̂ =
∑
m ~ωm|m〉〈m| and converting the functions

e−imωt into operators which change the Floquet index
by m, i.e., F̂m =

∑
m′ |m+m′〉〈m′|.

Before writing HF , we apply three unitary transforma-
tions that map the problem to a convenient basis. First,
we apply a polaron transformation that dresses the DQD
with the ambient phonons and photons in the environ-
ment [40, 46]

Up = e

[
gc(a−a†)/ωc+

∑
k λk(ak−a†k)/ω̃k

]
σz , (3)

where we have defined the renormalized ω̃k =
√
ω2
k + η2

to regularize the infrared divergences near ωk = 0. This
regularization is consistent with our assumption that the
phonon bath is coupled to a fixed temperature reservoir,
where η is the thermalization rate of the phonons. In this
treatment, the thermodynamic limit corresponds to tak-
ing η → 0, while maintaining the nanowire phonons at a
fixed temperature. The transformation UpHU

†
p removes

the X̂σz term and results in explicit interaction terms
between photons and phonons. These terms were previ-
ously identified as giving rise to a strong phonon sideband
in the emission spectrum of the DQD [40]. As illustrated
in Fig. 1(b), in the context of the present work, they lead
to efficient equilibration between the resonator and the
phonons. The second transformation, motivated by the
strong periodic driving, folds the resonator and phonon
spectrum into a band between ±~ω/2

URW (t) = eincωa
†at
∏

n≥0

∏

k∈Ωn

einωa
†
kakt, (4)

where Ωn is the set of k such that (n − 1/2)ω < ωk <
(n + 1/2)ω. Finally, we apply a unitary UF (found nu-

merically) such that UFH
F
c U
†
F is diagonal, where HF

c is
the Floquet Hamiltonian associated with Hc. This mod-
ifies the coupling between the DQD and the photons and
phonons through the tensor uµmνm defined by

UFσν F̂nU
†
F =

∑

µ∈{x,y,z}

∞∑

m=−∞
uµmνn σµF̂m. (5)

With these transformations the Floquet Hamiltonian, to
lowest order in gc/ωc and λk/ωk, is

HF

~
=

∆

2
σz + δa†a+

∑

n,k∈Ωn

(ωk − nω)a†kak + ωN̂, (6)

+ (V̂cp + V̂cpp + h.c.),

V̂cp =
∑

n,µ,m

uµmyn

(
2itcgc
~ωc

δnnc
a+ P̂n

)
σµF̂m (7)

V̂cpp =
∑

n,µ,m

gcP̂n
ωc

(uµmxn+nca+ uµmxn−nca
†)σµF̂m, (8)

where ±~∆/2 are the two quasi-energies of HF
c , δnnc

is the Kronecker delta function, P̂n =
∑
k∈Ωn

2itcλk

~ω̃k
ak,
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and the summation limits are the same as above. The
term Vcp describes first order DQD-resonator and DQD-
phonon interactions, while Vcpp describes simultaneous
phonon-resonator-DQD interactions. When A � t2c/~ω,
~∆ ≈

√
ε20 + 4t2cJ

2
0 (A/~ω), where Jn refers to the

Bessel functions arising from the identity eiA sinωt/2~ω =∑
n Jn(A/~ω)einωt [22].
Steady State – We have chosen a basis where the first

four terms in HF , given in Eq. (6), are diagonal; how-
ever, Vcp and Vcpp are not diagonal and will lead to a
slow time evolution in this basis. We now solve for this
effective time-evolution using an adaptation of the Born-
Markov approximation to the Floquet space [14]. When
tcgc/~ωc � ∆, we can use the gc = 0 solution to deter-
mine the evolution of the resonator because it has neg-
ligible back-action on the DQD [48]. To solve for the
steady state we use a basis ordering convention such that
∆ < ω/2. This choice is convenient because, in this ba-
sis, single-phonon processes can only resonantly couple
states with the same Floquet index. As a result, the
Floquet blocks evolve approximately independently from
each other. The rate to spontaneously emit a phonon in
the Ωn band with n ≥ 0 and make a transition from the
upper(lower) to the lower(upper) state is

γn∓ =
8πt2c/~2

(nω ±∆)2
(|ux0

yn|2+|uy0
yn|2)J (nω ±∆), (9)

where J (ν) =
∑
k |λk|

2
δ(ν − ωk) is the phonon spectral

density. We assume the phonons are in thermal equi-
librium with temperature T and distributed according
to the Bose function np(ν) = (e~ν/kBT − 1)−1. In this
case, there is also stimulated emission and absorption at
the rates γsn∓ = γn∓ np(nω ±∆). Introducing the total
transition rate from the upper(lower) to the lower(upper)
DQD states γ∓ =

∑
n γn∓+γsn∓+γsn∓, the effective mas-

ter equation for the DQD within each Floquet block is

ρ̇n = i
∆

2
[σz, ρn] + γ−D[σ−]ρn + γ+D[σ+]ρn, (10)

where D[c]ρn = −1/2{c†c, ρn}+ cρnc
† and the total den-

sity matrix for the DQD is ρd =
∑
n ρn|n〉〈n|. As shown

in the supplementary material, this master equation can
be used to derive the steady state and all time-dependent
correlation functions of the DQD [49].

Sisyphus Thermalization – Based on the discussions
above, for finite gc, we expect three possible types of out-
put light. When resonance fluorescence dominates, the
DQD acts as a single photon source and produces anti-
bunched light. When 〈σν〉 6= 0 for some ν, or when there
is a large amount of a gain and the system begins lasing
[19], the DQD will drive the resonator into a coherent
state. Finally, if the DQD mostly acts to thermalize the
resonator, the light will exhibit thermal statistics.

Conveniently, the four-point correlation function

g(2)(0) = lim
t→∞

〈
a†(t)a†(t)a(t)a(t)

〉

〈a†(t)a(t)〉 , (11)

can distinguish these three states because g(2)(0) equals
zero for anti-bunched light, one for a coherent state, and
two for thermal light. Figure 2(a) shows g(2)(0) for a
nanowire DQD, calculated following the approach de-
tailed in the supplementary material [49], over a large
range of A and ω. The parameters defining J (ν) are
based on recent experiments in InAs nanowires [36]. We
took a separation between the two dots of 120 nm, a lon-
gitudinal confinement of 25 nm for each dot, a phonon
speed of sound of 4 000 m/s, and the DQD relaxation
rate at zero detuning to be 6 ns−1 [39, 46, 47].

Although the behavior of g(2)(0) shown in Fig. 2(a)
is a complex function of the drive parameters, we can
identify several general features. First, when the quasi-
energy ~∆ goes through a zero, which, for ε0 = 0, occurs
roughly at the zeros of J0(A/~ω), g(2)(0) tends to exhibit
singular behavior. Second, there are large regions where
the light has mostly thermal correlations, which tend to
occur when ωc/ω is near an integer nc. Interestingly, in
these thermal regions there is an even-odd effect with nc.
This arises from the σz form of the coupling between the
resonator and DQD [see Eq. (2)]. When ε0 = 0, the DQD
has to change states every time it exchanges a virtual
quanta with the drive, resonator, or phonons. As a result,
the thermalizing Raman processes [shown in Fig. 2(b)],
where the DQD exchanges nc drive quanta, a photon, and
a phonon and ends in the same state, are suppressed for
odd nc because the total number of virtual processes is
odd. For nonzero ε0, this constraint no longer applies and
the even-odd effect is weaker. Away from these thermal
resonances, the resonator is either strongly antibunched
or in a complex, mixed state of thermal, antibunched,
and coherent light.

To better understand how these thermal regions
emerge note that, near these resonances, the photon dy-
namics are dominated by incoherent Raman scattering
processes in which both a photon and phonon are ab-
sorbed or emitted without changing the state of the DQD
[see inset of Fig. 2(b)]. This occurs because the spectral
density for these Raman processes near these resonances,

JR(δ) =
∑

k

4t2cg
2
c |λk|2

~2ω̃2
kω

2
c

δ(δ−ωk) =
4t2cg

2
c

~2ω2
c

J (δ)

δ2 + η2
, (12)

diverges for small η for an InAs nanowire DQD (where
J (ν) ∼ ν [47]). As a result, the photons follow a simple
master equation [49]

ρ̇c = iδ[a†a, ρc] + (κ+Ra)D[a]ρc +ReD[a†]ρc, (13)

where κ is the resonator decay rate and Ra(e) are the
phonon-assisted, photon annihilation (creation) rates, re-
spectively. When Re 6= 0 and Re < κ + Ra, this mas-
ter equation always leads to a thermal distribution with
g(2)(0) = 2 [50].

To see how the chemical potential emerges, we have
to consider the regimes ω > ωc/nc and ω < ωc/nc sep-
arately. When ω < ωc/nc the dominant processes are
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FIG. 2: (a) g(2)(0) as a function of A and ω. We took ωc/2π = 16 GHz, tc = 20 µeV, ε0 = 0, gc/2π = 70 MHz, κ/2π = 1.3
MHz, η = 0.5 ns−1, and T = 200 mK. Vertical lines correspond to zeros of J0(A/~ω). (b) Effective temperature of the photons

in the thermal regions (defined by g(2)(0) > 1.9), with cavity decay neglected. (Inset) Raman scattering processes leading to
thermalization of photons when δ = ωc − ncω is near zero. The red line is a photon, the solid line is the drive, and the curved
black line is a phonon. (c) Mean photon number 〈a†a〉 in resonator for varying A and ω for ωc/2π = 7.5 GHz, η = 5 ns−1, and

other parameters from (a-b). Contours indicate g(2)(0)= (1.5/1/0.5) (red/white/blue), asterisks denote single-photon source

operating points with 〈a†a〉 ≈ 1 and g(2)(0) < 0.5, and RF marks the point of conventional resonance fluorescence ω = 2tc.

ones in which a photon is created (annihilated) along
with the annihilation (creation) of a phonon with fre-
quency δ = ωc − ncω. In this case, Re ≈ Rnp(δ) and
Ra ≈ R [np(δ) + 1]. From Eq. (8) and Fermi’s Golden
rule for Floquet systems, we can calculate [51]

R = 2π
∣∣uz0xnc

∣∣2 JR(δ). (14)

When ω > ωc/nc, a photon is created (annihilated) si-
multaneously with a phonon at frequency −δ > 0. In
this case, photon emission and absorption are reversed
and Re = R [np(−δ) + 1] and Ra = Rnp(−δ). As δ ap-
proaches zero from this side of the resonance and η → 0,
the gain rate of the resonator Re−Ra = R diverges and,
at some point, will exceed κ and begin lasing. In this
regime, the primary approximation in deriving g(2)(0),
that there is no back-action of the resonator field on the
DQD, breaks down; however, a full analysis of the satura-
tion mechanisms for this laser (including non-Markovian
effects in the phonon bath) is beyond the scope of the
present work. Despite this instability, Eq. (13) still forces
the resonator field to satisfy detailed balance until satura-
tion effects take hold, in which case Eq. (13) is no longer
valid. As a result, we can define an effective temperature
on both sides of the resonance

Re
κ+Ra

= e−~(ωc−ncω)/kBTeff . (15)

Our analysis above predicts Teff/T = 1 in these thermal
regions. Figure 2(b) shows Teff/T in the regions where
g(2)(0) > 1.9 with cavity decay neglected. These calcu-
lations include many additional photon creation (annihi-
lation) processes in Re(a) [49], but we see that this ratio
is still close to one over a large range of A and ω. The
emergence of an effective temperature in a sub-system of
a non-equilibrium system is a standard phenomena [3],

what is surprising in this case is that this effective tem-
perature is forced to equal the bath temperature. This
indicates that, for small δ, the identification of ~ncω with
a chemical potential is justified. The ability to engineer
chemical potentials for light, with a temperature con-
trolled by an external bath, has broad utility for quantum
simulation with light [32, 52–55]

Lasing – As shown in Fig. 2(a), away from the ther-
mal resonances, we observe a rich variety of steady state
behavior. A general feature we observe is oscillations be-
tween gain and loss in the resonator transmission with
varying drive parameters A, ω, and ε0 [49]. In these re-
gions, the gain is not phonon-assisted (as near the ther-
mal resonances) and arises from resonant transitions be-
tween Floquet states.

Single-Photon Source – Figure 2(a) shows distinct re-
gions where the light in the cavity is strongly anti-
bunched, i.e., g(2)(0)� 1. This indicates that the DQD-
resonator system can act as a microwave single-photon
source, similar to what has been achieved with supercon-
ducting qubits [29, 30]. Ideally one would like to achieve
small g(2)(0) and 〈a†a〉 ≈ 1. As shown in Fig. 2(c), this is
achieved near the conventional conditions for resonance
fluorescence, where ω is near resonant with the bare two-
level system [41, 42]. In addition, we find several other
regions at large drive amplitudes where the system also
achieves small g(2)(0) and 〈a†a〉 ≈ 1. The dynamics in
these regions can be understood as resonance fluorescence
in the Floquet basis, which has the strongest effect when
the the drive frequency and quasi-energy gap are near
resonant with the cavity or (not shown) a sub-harmonic
of the cavity.

Conclusions – We showed that a strongly driven InAs
nanowire DQD can equilibrate the photons in a nearby
microwave resonator into a thermal state at the tempera-
ture of the surrounding substrate and a non-zero chemical
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potential. The highly nonlinear response of the DQD to
the drive enables these chemical potentials to be induced
at a harmonic of the drive frequency, allowing for efficient
rejection of the drive field. Outside these thermal regions,
we found regimes where the system begins lasing or acts
as a microwave single-photon source. These latter two
effects are broadly applicable to other DQD material sys-
tems. Furthermore, one can tune between these diverse
regimes in situ simply by changing the drive parameters
or DQD configuration. DQDs broad utility to engineer
quantum states of microwave photons, as demonstrated
in this work, suggests many applications to cQED.
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