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We experimentally generate and characterize eigenstates of the Wigner-Smith time-delay matrix,
called principal modes, in a multimode fiber with strong mode coupling. The unique spectral
and temporal properties of principal modes enable global control of temporal dynamics of optical
pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that well-
defined delay times of the eigenstates are formed by multi-path interference, which can be effectively
manipulated by spatial degrees of freedom of input wavefronts. This study is essential to controlling
dynamics of wave scattering, paving the way for coherent control of pulse propagation through

complex media.

PACS numbers: 42.65.5f, 42.25.-p, 42.81.Cn

Temporal dynamics of wave scattering in complex sys-
tems has been widely studied in quantum mechanics, nu-
clear physics, acoustics and optics. Most of these studies,
e.g., electromagnetic or ultrasonic wave propagation in
billiards [1-4], electron transport through quantum dots
[5, 6], and light scattering in random media [7-12] fo-
cused on statistics of delay times, i.e., eigenvalues of the
Wigner-Smith time-delay matrix [13-15]. Despite innu-
merable trajectories waves could take through an open
complex system, an eigenstate of the Wigner-Smith ma-
trix remarkably has a well-defined delay time. Some of
the eigenstates are particlelike with their wavefunctions
concentrating on a single trajectory [4], and hence a defi-
nite transit time is expected. Most of the states, however,
consist of enormous trajectories with various lengths such
that it is concealed how well-defined delay times can be
attributed to these states.

Largely in parallel, the Wigner-Smith eigenstates were
introduced for multimode optical fibers (MMFs), which
recently attracted much attention due to the rapid devel-
opment of space-division multiplexing for telecommuni-
cations [16]. Inherent imperfections and external pertur-
bations introduce random mode coupling and cause pulse
broadening and distortion in a MMF. As a generalization
of principal states of polarization in single-mode fibers
[17], the Wigner-Smith eigenstates, also called principal
modes (PMs) in MMFs, were proposed to suppress modal
dispersion [18].

Advances in wavefront shaping techniques now make it
possible to probe a single Wigner-Smith eigenstate in op-
tics. Recently PMs were observed in a MMF with weak
mode coupling [19]. In this regime, mode coupling in the
fiber is only perturbative and PMs are similar to eigen-
modes of a perfect fiber [23]. In the strong mode coupling
regime, however, all modes are strongly mixed. Multiple
scattering of light between different modes generates nu-
merous paths for light to propagate through the fiber.
It thus remains obscure how PMs are formed with well-
defined delay times and what properties they possess in

the presence of non-perturbative mode mixing.

In this letter, we report on a demonstration of PMs in a
MMF with strong mode coupling. Our analysis uncovers
that well-defined delay times of PMs can be explained by
multi-path interference that is tailored by spatial degrees
of freedom of the input wavefront. This multi-path in-
terference also determines spectral bandwidths of PMs,
which limits the temporal width of pulses that can be
transmitted through the fiber without distortion.

The Wigner-Smith time-delay matrix is defined as
Q = —iS7'dS/dw, where S is the scattering matrix
[14, 15]. In the absence of backscattering in the fiber,
it can be expressed as Q = —iT~1dT/dw [18, 20], in
which S is replaced by the transmission matrix 7. We ex-
perimentally measure the spectrally-resolved field trans-
mission matrix of a step-index MMF in an off-axis holo-
graphic setup shown schematically in Fig. 1(a). To intro-
duce strong mode coupling in this one-meter-long fiber,
we apply stress to it with clamps. Field transmission ma-
trices are measured in momentum space and converted
to mode space. Figure 1(b) shows the amplitude of a
measured transmission matrix. Regardless of the mode
light is launched into, the output field spreads over all
modes, although higher order modes have lower ampli-
tudes due to stronger loss. The transmission matrix is
different from that in the weak coupling regime, which
has larger elements closer to the matrix diagonal, con-
firming the strong mode coupling in the current fiber.

The time-delay matrix @ is constructed from the
spectrally-resolved transmission matrix. Eigenvectors of
Q@ give input fields for PMs. They are unique input
states with first-order frequency derivatives of their out-
put fields vanishing at a certain frequency [18]. In an
ideal MMF, PMs are simply linearly polarized modes,
which are eigenmodes of MMFs in the weak guiding ap-
proximation. In the weak mode coupling regime, the
fiber is shorter than the correlation length (the distance
beyond which the spatial profile becomes uncorrelated
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Figure 1. (color online) (a) Schematic of the experimental
setup. The continuous-wave output of a tunable laser is col-
limated at C1, and split into two arms by a beam splitter
(BS1). Light in one arm is modulated by the SLM and im-
aged to the fiber facet by a lens (L1) and an objective (O).
The output field from the fiber is collected by a lens (C2)
that one focal length away from the fiber facet and combined
with light in the other arm at a second beam-splitter (BS2).
By offsetting BS2 to introduce a phase tilt between the two
wavefronts, interference fringes are formed. From the inter-
ferogram recorded by the camera (CCD) at the back focal
plane of C2, the output field is extracted in momentum space.
The mirrors (M1, M2) are used to match the path-length of
the two arms. The MMF has 50 um core diameter and 0.22
numerical aperture. (b) Amplitude of the measured transmis-
sion matrix at A = 1550 nm (w=1219 THz). (c¢) Amplitude
profile of a PM at the output. (d) Decomposition of the PM
in (c) by linearly polarized modes.

[21]), and each PM consists of a few modes with similar
propagation constants [23]. However, if the fiber length
well exceeds the correlation length, all modes are thor-
oughly mixed and PMs are expected to be distinct from
those in the weak coupling regime.

We use a spatial light modulator (SLM) to generate
input wavefronts of individual PMs in this MMF with
strong mode coupling. To modulate amplitude and phase
of the input field with the phase-only SLM, a computer-
generated phase hologram is employed [22]. Figure 1(c)
shows the output pattern of a PM, which is speckled and
does not resemble any linearly polarized mode. Modal
decomposition of the output field reveals that the PM is
a mixture of many modes [Fig. 1(d)], in contrast to PMs
in the weak mode coupling regime [23].

To investigate the spectral property of PMs, we scan
the frequency w while keeping the input field to that of
a PM at wy. Figure 2(a) shows the nearly identical far-
field patterns of the PM at three different frequencies
(top row). For comparison, a random superposition of
modes at the input results in different output profiles at
these frequencies [bottom row of Fig. 2(a)]. This striking
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Figure 2. (color online) (a) Output field amplitude for a PM
input with short delay time at wo = 1219 THz (top row), or
a random superposition of linearly polarized modes (bottom
row). The input frequency is w — wo = —157 GHz (left), O
(middle), and 157 GHz (right). The output fields for the PM
input are similar while those for random input are totally dif-
ferent. (b) Spectral correlation function C'(Aw) of the output
field, experimentally measured for a PM (red solid), and cal-
culated from the transmission matrix and input wavefront of
the same PM (green dotted). For comparison, C(Aw) for a
random input is also shown (blue dashed). C(Aw) is normal-
ized to one at Aw = 0. Its value decreases to 0.9 at Aw =
338 GHz for the PM and 173 GHz for the random input. The
agreement between the red and green curves illustrates the
accuracy of the measurement.

difference illustrates the slower spectral decorrelation of
a PM.

To be quantitative, we calculate the spectral correla-
tion function C(Aw = w — wp) = |P(wp)* - ¥(w)|, where
W (w) is a vector representing the output fields in all spa-
tial channels with its magnitude normalized to unity. As
shown in Fig. 2(b), C(Aw) for the PM is significantly
larger than that for the random input. It displays a broad
plateau at Aw = 0. To understand the shape of the corre-
lation curve, we denote C'(Aw) = cos[0(Aw)] [23], where
0 is the angle between the two output field vectors at
w and wy. Since #(0) = 0, the first-order derivative of
C with respect to Aw vanishes at Aw = 0 for any in-
put wavefront. The second-order derivative at Aw = 0 is
proportional to [6/(0)]?, where ' = df/dAw. For PMs,
6'(0) = 0, because the output field remains unchanged to
the first order of frequency variation. Thus the second-
order derivative vanishes for PMs, leading to a plateau,
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Figure 3. (color online) (a,b) Temporal variation of the out-
put field amplitude in three spatial channels (three speckles
grains) when an optical pulse is spatially launched into a ran-
dom superposition of modes (a) or a PM at wg = 194 THz
(b). The output field is recorded in a frequency range of 400
GHz with a step size of 2.5 GHz. The Fourier transform is
performed to obtain the temporal evolution of the field. The
horizontal axis is the relative delay time, obtained by sub-
tracting the average delay time for random inputs. The tem-
poral traces of individual spatial channels are totally different
for the random input, but nearly identical for the PM input.
(c) Spatially integrated intensity of the input (black dotted)
and the output pulses when a Gaussian pulse is injected to
the MMF with random spatial profile (blue dashed) or with
the profile of a PM (red solid).

which is absent for random inputs, at the center of the
correlation curve.

Next, we probe temporal dynamics of a single PM.
The transmission of a pulse through a MMF with strong
mode coupling involves spatial and temporal distortions.
Strong mode mixing results in the hop of light among
modes with different propagation constants. Thus light
can take many paths of varying lengths through the fiber.
The output field in each spatial channel (e.g. speckle
grain) is a sum of waves with different paths, each asso-
ciated with a respective time delay, leading to temporal
broadening and distortion of the input pulse. Typically,
temporal traces vary from one channel to another, since
combinations of paths differ. This is confirmed by simu-
lating the propagation of a pulse, ¢(t) = [ ¢(w) e™“'dw,
with a spectrum ¢(w). Light is spatially launched into
a random superposition of modes at the input, and the
output fields are experimentally recorded at multiple fre-
quencies. We perform the Fourier transform to obtain
the temporal evolution of the output field in each spatial
channel. Figure 3(a) shows temporal traces of the field
amplitude in three spatial channels. They differ from
each other, due to strong mode scrambling in the fiber.

However, when input light is spatially coupled to a PM,
the output fields in all spatial channels are synchronized,
as shown in Fig. 3(b). This is a direct consequence of the
invariance of the output field with frequency. Specifically,
the output field vector at frequency w can be written as
U (w) = ¢(w)T(w)®, where ® corresponds to a PM in-
put at wg. If the input pulse bandwidth is less than the
spectral correlation width of the PM, T'(w)® ~ a(w)®¥,,
where ¥ is a unit vector representing the normalized

output field for the PM at wp, and a(w) is a complex
number that may vary with frequency. The Fourier trans-
form of W(w) can be written as ¥(t) = ¢(t)¥,, where
o(t) = [ p(w)a(w)e *!dt represents the temporal shape
of the output pulse. Hence, spatial and temporal varia-
tions of the output field become decoupled for PMs. The
temporal traces in all output channels are identical up to
a constant factor given by the elements of U,. The spa-
tial profile of the output field remains constant in time,
allowing the spatial and temporal distortions to be cor-
rected separately. For example, the output pulse shape
can be tailored by modulating the spectral phase of the
input spectrum ¢(w). Since the output fields are spa-
tially coherent, a spatial mask can convert the output to
any desired pattern or focus to a diffraction-limited spot.

Let us consider a simple case, a(w) ~ ape’“), where
ayp is a constant amplitude and the phase n(w) ~ n(wo) +
14 (W — wp), where n( is the value of dn/dw at wy. The
output pulse, (z)(t) x ¢(t — n}), has the same temporal
shape as the input one. This is confirmed by synthesiz-
ing a pulse with Gaussian spectrum and flat phase at
the input. The output intensity, summed over all spa-
tial channels, is plotted in Fig. 3(c) together with the
input pulse. The output pulse has negligible broadening
and shape distortion, despite strong mode coupling in the
fiber. In contrast, the same pulse, but with a random in-
put pattern, suffers from severe broadening as seen in
Fig. 3(c). PMs thus compensate for temporal distortions
induced by modal dispersion in a MMF.

The unique spectral and temporal properties of PMs
hold only within a finite frequency range. It is hence
important to determine bandwidths of PMs. Since the
spectral decorrelation of the output pattern for any in-
put wavefront depends on fiber properties, such as fiber
length and numerical aperture, we consider below the ra-
tio of PM bandwidths to the average bandwidth of ran-
dom inputs. Figure 4(a) plots the experimentally mea-
sured bandwidths of all PMs versus their delay times.
The shorter the delay time, the larger the bandwidth.

To obtain a physical understanding of PMs and their
spectral correlation widths, we resort to an intuitive pic-
ture of optical paths in the fiber. The output field
is a result of interference of waves following innumer-
able possible trajectories in the MMF created by strong
mode coupling. As the input frequency changes, rela-
tive phases accumulated along trajectories of different
lengths vary, modifying the output field. Specifically, the
output field in the m'™ spatial channel can be written
as W, = [ (l)dl, where u,,(l) is a sum of fields tak-
ing all possible paths with the same length [. With a
small frequency detuning Aw, the output field becomes
U (Aw) = [y (l)et2@l/edl, in the weak guiding ap-
proximation. Thus w,,(I) can be obtained experimentally
from the Fourier transform of ¥,,(Aw). Accounting for
all spatial channels, U (1) = 3~ |u, (1)|? gives an intensity

m
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Figure 4. (color online) (a) Measured spectral correlation

width Aw. of PMs with different delay times. Aw., given
by |C(Aw.)| = 0.9|C(0)], is normalized by the average band-
width of random inputs. The shortest delay time is set to
0. (b) Intensity distribution over the path-length U(l) for
three measured PMs with the delay time = 0, 0.06, 0.12
ns. The relative path-length [ is obtained by subtracting the
average path-length of random inputs. U(l) is normalized:
JU@)dl = 1. (c) Calculated spectral correlation width of
the PMs with (red circles) and without (black crosses) mode-
dependent loss. (d) Intensity distribution over the path-
length for two PMs with the delay time = 0 ns (blue), 0.12 ns
(black), in the presence (dashed) or absence (solid) of mode-
dependent loss. The mode-dependent loss narrows (broadens)
the path-length distribution for the fast (slow) principle mode,
thereby increasing (reducing) the spectral correlation width.

distribution over path-lengths, which is determined by
the input wavefront.

Figure 4(b) compares U (1) for three PMs with different
delay times. The fast PM concentrated the intensity on
shorter paths. Although the waves can take many longer
paths, destructive interference of longer paths makes U (1)
vanish. The opposite happens to the slow PM. The re-
distribution of intensity among different path-lengths is
determined by the input wavefront. Therefore, delay
times in a MMF with strong mode coupling is determined
by multi-path interference, which can be effectively con-
trolled by spatial degrees of freedom of the input wave-
front. We emphasize that the well-defined delay times for
PMs are only guaranteed at the output end of the fiber,
such that PM-based pulses spread in the middle of the
fiber before recompressing again at the output. This be-
havior is in sharp contrast to that of particle-like states
[23, 24].

The intensity distribution over path-lengths also de-
termines the spectral correlation widths of PMs. The
narrower the distribution, the weaker the dephasing be-

tween different path-lengths by frequency detuning, and
the smaller the change in the interference pattern at the
output. Hence, PMs with shorter delay times have larger
spectral correlation widths due to the narrower path-
length distribution.

The final question we address here is why fast PMs
have narrower path-length distributions. To answer this
question, we perform numerical simulations using the
concatenated waveguide model [25]. For simplicity, we
consider a planar waveguide with a 300um core and a 0.22
numerical aperture, supporting 86 modes. The waveg-
uide is one meter and composed of 20 segments. Light
propagates without mode coupling in each segment. Be-
tween adjacent segments, all modes are randomly cou-
pled, as simulated by a unitary random matrix. To in-
clude mode-dependent loss, we introduce a uniform ab-
sorption coefficient to each segment. Higher-order modes
with smaller propagation constants, have longer transit
time, thus experiencing more attenuation. In terms of
optical path, longer paths have more loss than shorter
ones.

Figure 4(c) plots spectral correlation widths of PMs in
the absence of mode-dependent loss (black crosses). The
fast and slow PMs have almost identical bandwidth, as
the corresponding intensity distribution among the path-
length exhibits similar spread at different mean values
[Fig. 4(d), solid curves]. With the introduction of mode-
dependent loss, the bandwidth of fast PMs increases,
while the bandwidth of slow ones decreases, leading to
agreement with the experimental data [compare red dots
in Fig. 4(a) with those in Fig. 4(c)]. This rearrangement
can be explained by the change in U(l) that is plotted in
Fig. 4(d). The distribution for a fast PM, which concen-
trates on short paths, becomes narrower, because longer
paths are further suppressed by loss. For a slow PM, the
stronger attenuation of longer paths not only shifts the
peak of U(l) to smaller I, but also broadens the distribu-
tion. Qualitatively, the change of PM bandwidth induced
by the mode-dependent loss is not sensitive to the kind of
loss the fiber experiences, as long as higher-order modes
have more loss, as expected for MMF's.

In summary, we experimentally probe individual eigen-
states of the Wigner-Smith time-delay matrix of a MMF
with strong mode coupling. We find that the well-defined
delay times of the eigenstates are formed by multi-path
interference, which can be manipulated by spatial de-
grees of freedom of the input wavefront. The multi-
path interference also determines the frequency range
over which the unique spectral and temporal proper-
ties of the Wigner-Smith eigenstates preserve. Within
the bandwidth, spatial and temporal variations of the
transmitted field are decoupled for the eigenstates, en-
abling a global spatiotemporal control of pulse trans-
mission through complex media. Such global control,
which is more challenging than control over a single spa-
tial channel such as spatiotemporal focusing [26-31], has



potential applications in optical communication, imaging
and sensing.
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