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In living cells, chemical reactions are connected by sharing their products and substrates, and form
complex networks, e.g. metabolic pathways. Here we developed a theory to predict the sensitivity,
i.e. the responses of concentrations and fluxes to perturbations of enzymes, from network structure
alone. Responses turn out to exhibit two characteristic patterns, localization and hierarchy. We
present a general theorem connecting sensitivity with network topology that explains these char-
acteristic patterns. Our results imply that network topology is an origin of biological robustness.
Finally, we suggest a strategy to determine real networks from experimental measurements.

PACS numbers: 02.10.Ud, 47.27.ed, 87.10.-e

Cells have many chemical reactions, each of which is
mediated by organic catalysts, enzymes. Reactions are
not independent but connected and form complex net-
works. Dynamics of chemical concentrations are consid-
ered as origin of physiological functions. However, dy-
namical behavior based on the network is not understood
well.

One experimental approach to study such network sys-
tems is sensitivity analysis where amount/activity of en-
zymes are perturbed and responses (concentrations of
chemicals in the system) are measured [1]. However, the
result of such experiments are very difficult to interpret,
because theoretical criteria to evaluate the results of per-
turbations from network structures are not established.
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FIG. 1. Sensitivity analysis. After the amount/activity of
an enzyme protein is decreased, the concentration change of
metabolites are measured.

There are other difficulties to understand dynamical
behaviors of reaction systems in biology. First, although
huge information of reaction networks is available on
databases [2-4], they provide no more than knowledge
of identified reactions in biochemistry. It is possible that
the information is incomplete, including many unidenti-
fied reactions or regulations. Second, in spite of the re-
cent progress in biosciences, it is still difficult or almost
impossible to determine quantitative details of dynamics,
such as functions for reaction rates, parameter values, or
initial states.

In order to circumvent these difficulties, we introduce a
mathematical method, named structural sensitivity anal-
ysis [13, 14], to determine responses of chemical reac-
tion systems to perturbation of enzyme amount/activity
based only on network structure. From analyses we found
that qualitative responses at a steady state is deter-
mined from information of network structure only. We

also found that response patterns, e.g. distribution of
nonzero responses of chemical concentrations in the net-
work, exhibit two characteristic features, localization
and hierarchy depending on the structure of networks
and position of perturbed reactions. Finally we found
a general theorem connecting the network topology and
the response patterns directly, and governing the char-
acteristic patterns of responses. This theorem, which we
call the law of localization, is not only theoretically im-
portant, but also practically useful for examining real bi-
ological systems. In the context of adaptation, there were
some previous studies, which reported confined nonzero
responses in specific systems [9-12]. However, they did
not find general laws of such response patterns, nor any
topological conditions.

We study concentration changes in a reaction system
under perturbation of reaction rate parameters, assum-
ing that the system is in a steady state [13, 14]. We
label chemicals by m(m = 1,---, M) and reactions by
j(G =1,---,R). A state of the system is specified by
concentrations z,,(t) and obeys the following differential
equations [15, 16]
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Here, v is called a stoichiometric matrix. W; is called a
flux, which depends metabolite concentrations and also
on a reaction rate k;. We do not assume specific forms
for W;, but assume that each W is an increasing function
of its substrate concentration;
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=0 otherwise.

{‘9W7‘ > 0 if z,, is a substrate of reaction 1,

Below, we abbreviate and emphasize nonzero ngi as
m
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In this framework, enzyme knockdown of the j-th re-
action corresponds to changing the rate as k; — k; + k;
(triangles in FIG. 2). By assuming steady state [5-8],
the flux is expressed, in terms of a basis {¢,} of kerv,



as W = Zgil u"™ ¢y, where Ny is the dimension of the
kernel and p™ are Ny coefficients depending on reaction
rates. Under the j-th knockdown, we have

GW =6, = ( T 5n> ok;.  (3)
n=1 n=1
The i-th component of 6jW is also expanded as
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From (3) (4), the response of steady state concentra-
tion 6,7 = C}%ékj (circles in FIG. 2) and flux 5jW (ar-
rows in FIG. 2) to each perturbation k; — k; + dk; is
determined from network structure only [13, 14]. The
result for each perturbation is simultaneously obtained
through the following matrix computation:
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where the matrix A is given as
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In (5) and (6), the horizontal and vertical lines are the
partitions _»of the matrices. We then obtain the flux
change 6; W from (3), or

(W 6rW )= (€1, ) (Oufi-+-0rfi) (7)

in a matrix notation. We call the inverse of A as the sen-
sitivity matriz S. Note that 6;, 04, 6;W, ¢, are column
vectors with M, Ni, R, and R components respectively,

and 2%% is an R-by-M matrix. We assume networks with

O
dimker v” = 0 throughout this paper, which guarantees
the matrix A is square, i.e. R = M + Nj.

Comments are in order. First, our theory depends
only on the structure of reaction networks. The network
structure is reflected in the distribution of nonzero en-
tries in the A-matrix, which determines the qualitative
responses. Second, as a generalization of our method,
we account for regulations such as allosteric effects by
relaxing (2) as

0Tm
OW;
0T

(2))

OW. £ () if x,, influences reaction 1,
=0 otherwise.

Then, regulations add additional r;, in the A-matrix,
and the response is still determined through (5).

Let us see some results of structural sensitivity analy-
sis.

Example 1: We consider a straight pathway, shown in
FIG. 2 (Left). The A-matrix and the sensitivity matrix
S are
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FIG. 2. Reaction networks and sensitivities in Example 1 and
2. The red triangle indicates a knocked down reaction. The
signs (increase/decrease) of responses are represented by +/—
for chemicals and solid/dashed red lines for fluxes.
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The flux changes only when we perturb the top reaction
1 (the 1st column of S). The perturbation to reactions
2 or 3 changes only its substrate concentration (the 2nd,
3rd column of S).

FExample 2: The second example shown in FIG. 2
(Right) consists of 6 reactions and 4 chemicals.The ma-
trices A and S are
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Again, only the perturbation to the input rate, cor-
responding to the 1st column in (10), affect all chemi-
cals and fluxes. Perturbations to reactions 2,3,5 only
decrease the concentrations of the substrates A, B, D re-
spectively. Knockdown of reaction 4 decreases the con-
centrations D, A, B along the cycle downward of the per-
turbation (see FIG. 2, and the 4th column of S). Knock-
down of reaction 6 doe not change the further down-
stream but change A, B,C,D in the cycle. Also, the
signs of the responses are reversed (the 6th column of S).

Ezxzample 3: The third network in FIG. 3 (Left) in-
cludes 10 chemicals and 15 reactions. FIG. 3 (Right)
shows nonzero response patterns of metabolites and in-
clusion relation between them. See Supplementary Ma-
terial (SM) for the A-matrix and the sensitivity matrix.

In general, response to perturbations in chemical reac-
tion networks exhibits two characteristics, localization
and hierarchy. The localization means that the influ-
ence of the perturbations is confined in a finite region
in a network. In other words, the naive intuition that a
perturbation in an upper part of a reaction network in-
fluences all of the lower parts is incorrect. The hierarchy
implies that the nonzero response patterns under pertur-
bations of different reaction rates exhibit inclusion rela-
tions among them.
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FIG. 3. (Left) Reaction network of example 3. (Right) Graph
of response hierarchy, summarizing the inclusion relations be-
tween nonzero response patterns. When a reaction rate in any
square box is perturbed, the metabolites in the box plus those
in the lower boxes shows nonzero responses. The three colors
(red, green, blue) correspond to I'io, 11,12 respectively in
the text.

From the A-matrix (6), we can generally prove a theo-
rem, the law of localization, that determines the extent to
which a perturbation influences in a network. For a given
network, we consider a pair I' = (m,t) of a metabolite
subset m and a reaction subset t satisfying the condition
that v includes all reactions influenced by metabolites in
m (see the condition (2)). The choice of ¢ for a chosen m
is not unique in general. We call a subnetwork satisfying
this condition “output-complete”. For such a subnetwork
T, we count the number |m| of elements in m, the number
|t| of elements in v, and the number Ni(t) of the closed

cycles that consist of the reaction subset v. Then, we
compute a index,
AT) = —[m| + [¢] = Ni(v), (11)

which is analogous to Euler characteristic and gener-
ally non-negative. The law of localization states that if
A(T) = 0 for an output-complete subnetwork I", then any
perturbation of reactions in I" does not change the con-
centrations and the fluxes outside of I', namely the per-
turbation effect is localized in I itself. We call an output-
complete subnetwork satisfying A\(I') = 0 as a buffering
structure.

(Proof): The theorem is proved from the distribution
of nonzero entries of the A-matrix. (i) Suppose a subnet-
work T' is a buffering structure. Then by appropriately
choosing a basis of the kernel of v and the orderings of
the indices of the A-matrix, we can always rewrite the
A-matrix as,

[m|+Ng (v)
* *
A= I ! . (12)
0 *

The lower left block vanishes because A is output-
complete. (ii) As explained already, the concentration

3

change §;x., is proportional to A:n; o Det AG™) | where
AG™) 5 the minor matrix associated with the row of
the j-th reaction and the column of the m-th metabolite.
Then, Det AU™) = 0 for i € v, m ¢ m follows because
the upper left block in the minor AU "m) which was orig-
inally square in (12), is horizontally long. O

We illustrate the law of localization in the example net-
works in FIG. 2 and FIG. 3 (Left).

Exzample 1: The network includes two buffering struc-
tures, I'y = ({A},{2}) and T's = ({B},{3}) which are
minimum buffering structures including only a single
chemical and a single output reaction. The law of lo-
calization claims that the perturbation to reaction 2 in
I"y should influence only inside of I'y, namely the con-
centration of A (since the flux 2 should not change in
order to keep the outside of I'y unchanged). We actually
observed the predicted response in (8). Generally, a per-
turbation to a reaction which is a single output from a
chemical influences the substrate concentration only.

Example 2: In addition to the 3 minimal buffering
structures, I'y = ({4},{2}), T2 = ({B},{3}), I's =
({D},{5}), the network has two larger ones, I'y =
({A,B,D},{2,3,4,5}) (with A\(Ty) = -3+4—1=0),
I's = ({4,B,C,D},{2,3,4,5,6}) (with A\(T'5) = —4+5—
1=0). I'y is the minimum buffering structure including
reaction 4. Then, the law of localization predicts that the
nonzero response to perturbation of reaction 4 should be
limited within I'y, which is observed in the 4th column in
(10). Similarly, the response to perturbation of reaction
6 is explained by I's.

Example 3: The network has 14 buffering structures,
listed in SM. To examine the response hierarchy, we focus
on the three buffering structures colored in FIG. 3; I';g =
({C,E,G,H},{5,6,9,11,12}) (with A(T'19) = -4+ 5 —
1 =0),Ty = ({C,D,E,G,H},{5,6,7,8,9,11,12})
(with )\(Fll): 5+ 7—-2 = 0), and T3 =
({C,D,E,F,G,H,I,J},{5,6,7,8,9,10,11,12,13,14,15})
(with A(T'12)= —8 + 11 — 3 = 0). Each of these three
explains the response pattern under perturbation of re-
action 5, 8, and 10 (or 13), respectively, and they satisfy
an inclusion relation, I'yg C I'y; C I'1o. Accordingly, we
can see from FIG. 3 (Right) that these response patterns
satisfy an inclusion relation.

In this way, we understand all of the observed patterns
from network topology by using the law of localization. In
short, the first characteristic, localization, is explained
from existence of buffering structures. The second prop-
erty, hierarchy, is explained as the nest of the buffering
structures.

Finally, as an application to real biological networks,
we examine the carbon metabolism pathway of E. coli.
The network is a major part of energy acquisition pro-
cess, and the basic structures are shared between bacteria
and human beings. FIG. 4 shows the network [1], includ-
ing 28 metabolites and 46 reactions, and FIG . 5 shows



PG

—>PEP e Lactate —>45
a132| oy 87 o 44
PYRZ—> AcCoA — 1> Acetate >
42 ~ 2 PERNET]
2 <4 \ S 4
N W\ thanol -
) 3 o o
\ I 2
v N
41, A W20

A ok

X e
27 ~suc&” %

FIG. 4. E. coli network. (Adopted from [1]).
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FIG. 5. The response hierarchy of E. coli network.

the response hierarchy (see SM for the detail). Again,
the response patterns exhibit the two characteristic fea-
tures, localization and hierarchy. The network has 17
buffering structures, and the existence and the nest of
them explain the two characteristic features perfectly.
We mention that some of the buffering structures, which
are of course defined from network topology, are surpris-
ingly overlapping to biologically identified sub-circuits,
the pentose phosphate pathway (yellow in FIG. 4, 5), the
tricarboxylic acid cycle (blue) and the glycolysis (green).
This correspondence may be understood from an evo-
lutional point of view by considering the advantage of
buffering structures.

We discuss the biological significances of buffering
structures (and nest of them) in two different levels.
The first discussion is on the physiological importance.
A buffering structure prohibits influence of given per-
turbation from expanding to the outside, like a “fire-
wall”. In other words, it is a substructure with robust-
ness emerging from the network topology. The carbon
metabolism network of E. coli possesses multiple nested
firewalls (FIG. 5), and are expected robust to fluctuations
of enzymes in it. We expect that such topological charac-
teristic of reaction networks could be evolutionary origin
of homeostasis of biological systems. A set of chemical
reactions satisfying the condition of buffering structure
by chance in evolutionarily early time would be positively
selected as an advantageous circuit. We then expect that
buffering structures in existing biological networks today
might be generated and selected in such ways.

The second discussion is about practicality of the law
of localization in experimental biology. Our knowledge
of biochemical networks is considered incomplete: There
might exist unidentified reactions or regulations. The
condition for buffering structure depends on the local net-
work structure only, which implies that we can study the

sensitivity of the system only from local information on

the network.
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FIG. 6. A strategy toward elucidating a true network.

From this property, we can determine a “true” net-
work by combining experiments as shown in FIG. 6. If
a given perturbation (knock down or over expression)
to a predicted buffering structure, determined from net-
work topology, DOES influence outside of the buffering
structure, then there must be inconsistency between the
database information and the actual network. The mis-
match must exist inside of the candidate structure, i.e.
there must be unknown reactions or unknown regulations
inside (or emanating from) the candidate subnetwork.
By repeating theoretical predictions and experimental
verifications, we can determine the “true” network from
partial to the whole network in a step-by-step manner,
i.e. from smaller to larger buffering structures. Our the-
ory must promote understanding of reaction networks in
both theoretical and experimental levels by directly con-
necting network topology with behaviors of the systems.

Using a different method, Steuer et al. studied a math-
ematical criteria for “perfect adaptation”, where chang-
ing a rate constant in one part of the network does not
affect steady-state concentrations or fluxes, which in fact,
is a subpart of the phenomena we studied in this paper.
There are at least three large differences: (i) We studied
not only perfect adaptation, but also any qualitative re-
sponses (increase/decrease/invariant), (ii) While Steuer
et al.’s method needs to examine a condition one by one
for each pair of perturbation and chemicals, our method
determines changes of all concentrations and fluxes by
each perturbation of all reaction rates simultaneously
via (5). (iii) We found and proved a general law which
claims that the property of perfect adaptation emerges
from local topology of network. Despite these differences,
it would be interesting to explore relations between two
mathematical theories.
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