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We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a
quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement
due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy
bound states when the superconducting phases in the two arms differ by an odd multiple of π across
the Josephson junction. We investigate the detection of these Majorana pairs with the integrated
QPC, and find a robust switching from normal to Andreev scattering across the edges due to
the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative
signature where multi-terminal differential conductances oscillate with alternating signs when the
external magnetic field is tuned. We show that this qualitative signature is also present in current
cross-correlations. Thus, the change of the backscattering current nature affects both conductance
and shot noise, the measurement of which offers a significant advantage over quantitative signatures
such as conductance quantization in realistic measurements.

In the pursuit of Majorana zero-energy modes [1–6]
in topological superconductors several experimental and
theoretical directions are being explored. Most notice-
ably, these include topological insulator/superconductor
structures [7–11], semiconductor-superconductor het-
erostructures [12–23], and magnetically-ordered metallic
systems coupled to an s-wave superconductor [24–32]. In
all cases, proximity to superconductivity (SC) leads to
the formation of the Majorana zero-energy bound states
localized at the defects such as vortices and domain walls.
Such defects have been predicted to obey non-Abelian
braiding statistics [33–35], and, as such, might be useful
for topological quantum computation [36–38]. The detec-
tion of MBSs often involves measurements of transport
signatures such as zero-bias anomalies [16, 18, 39–41],
quantized conductance [39, 42, 43], or fractional Joseph-
son effect [8, 13, 36, 44, 45]. Most of these signatures,
however, can be obscured by real-world problems like dis-
order [46–48] and quasi-particle poisoning [49, 50], mak-
ing the detection of MBSs challenging.

In this paper, we propose a setup for preparing and ob-
serving MBSs in systems exhibiting quantum spin Hall
(QSH) effect [51–53], such as HgTe quantum wells [52–
54], and InAs/GaSb quantum wells [10, 11, 55–57]. The
setup, illustrated in Fig. 1, has a built-in quantum point
contact (QPC) with a conventional superconductor (SC)
junction covering a half of the constriction. The two
parts of the SC are connected far away from the QPC re-
gion, and consequently the SC phase difference ϕ across
the SC junction can be tuned by a weak perpendicular
magnetic field. A pair of zero-energy MBSs is localized
at the junction when ϕ is an odd multiple of π [8, 58].
At these points, time-reversal symmetry (TRS) applies
approximately as long as the magnetic field that creates
the phase difference for the SC arms is weak enough, and
the MBSs form a Kramers pair. Using the scattering
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FIG. 1. Our proposed setup: a quantum point contact build
in a quantum spin Hall sample is half covered by a Josephson
junction; three metallic contacts of a (half) Hall-bar configu-
ration are away from the point contact, with contact 3 always
grounded.

approach for noninteracting electrons [59, 60], we ana-
lyze the transport signatures related to these MBSs and
propose several ways to measure them using the QPC.
The advantages of this proposal are twofold: first, sev-
eral key steps such as the experimental realization of a
QPC, as well as proximity induced pairing in the edge
states, in an InAs/GaSb QSH sample have been already
performed [61]; second, our proposed signature is quali-
tative, and does not rely on quantization of differential
conductances that is difficult to realize due to thermal
broadening.

We start by analytically finding the bound-state solu-
tions at the interface between the quantum point contact
and the SC (see Fig. 1 highlighted region). In the inter-
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FIG. 2. Schematic explanation of the origin of the Majorana
Kramers pairs.

face region, the effective Hamiltonian is given by

H =

∫
dx

∑
n=1,2

[
ψ†Rn(~vF k̂ − µ)ψRn + ψ†Ln(−~vF k̂ − µ)ψLn

]
+
∑
n=1,2

∆n(x)eiϕn(x)ψ†Rnψ
†
Ln + h.c.

+m(x)(ψ†R1ψL2 + ψ†L1ψR2) + h.c.

+ f(x)(ψ†R1ψR2 − ψ†L1ψL2) + h.c., (1)

where ψR/Ln ≡ ψR/Ln(x) is the fermionic field (annihi-
lation) operator near the Fermi energy for the right/left
moving edge states along the upper (n = 1) or lower

(n = 2) edge, vF is the Fermi velocity, k̂ ≡ −i∂x, and all
∆n(x), m(x) and f(x) are real without loss of general-
ity. Physically, m and f represent the hybridization gaps
possible when the two edges of the QSH sample approach
near the QPC; ∆ is the induced SC gap with phases ϕ1

and ϕ2 in different arms (see Fig. 1). This Hamiltonian
transforms under time-reversal and particle-hole symme-
tries (PHS) as follows:

TH(ϕ1, ϕ2)T−1 = H(−ϕ1,−ϕ2), (2)

PH(ϕ1, ϕ2)P−1 = −H(ϕ1, ϕ2). (3)

Here, by definition, TψRnT
−1 = snψLn, TψLnT

−1 =
−snψRn with s1=1 and s2=−1, PψR/LnP

−1 = ψ†R/Ln,

TaT−1 = a∗ and PaP−1 = a∗ if a is a number. For
simplicity, we further assume ∆n(x) = snθ(x)∆, m(x) =
θ(−x)m, f(x) = θ(−x)f with θ(x) the Heaviside step
function and ∆,m, f > 0, as well as

ϕ1(x) = (1− ε0x)ϕ, ϕ2(x) = (ε0x)ϕ (ε0 ≥ 0). (4)

Physically, ε0 is roughly proportional to the inverse of
the circumference of the SC that encloses the magnetic
flux. We assume ε0 to be sufficiently small such that both
ϕ1 and ϕ2 are slowly varying at the length scale of the
SC coherence length ξ = ~vF /∆. If ε0 6= 0, there is a
finite TRS-breaking splitting energy between two MBSs
δE = ~vF ε0ϕ/2 even if ϕ is an integer multiple of π [cf.
Eq. (2)].

FIG. 3. Spectra of the subgap states obtained numerically
from Eq. (5). Cases are compared between strong (grey line)
and mild (blue line) point contact constriction, as well as
between constant (blue line) and spatially varying (red line)
pairing phases. In all cases we assume µ = 0.

The existence of a Kramers pair of MBSs in the limit
of ε0 = 0 is based on a simple physical argument. In
Fig. 2a we present the system’s every dispersion in the
normal region far from the QPC (x � 0), featured by
the two gapless one-dimensional Dirac dispersions of the
lower and upper QSH edges. As the edges get closed to-
gether near the QPC (x . 0), they hybridize and open
a trivial gap at non-Kramers points (Fig. 2b). On the
SC side (x > 0), a SC gap (larger than the hybridization
gap, which is always the case when x � 0) is present at
the Fermi level (which can be tuned by a gate) to create
another insulator. This is a gapped superconductor, but,
it is a topological one (Fig. 2c). Notice that R1, R2 are
right movers giving two k > 0 Fermi points on the upper
and lower edges, as such, the superconducting gaps differ
by a sign on the two k > 0 Fermi points when there is
a π phase shift in the two arms of the superconductor.
Thus, at x > 0 we have a time-reversal topological su-
perconductor. A Kramers pair of MBS appears when the
topological superconductor is put next to a trivial insu-
lator x . 0. These qualitative arguments agree well with
the analytic solution discussed below.

In the subgap regime, namely |E| < min(m− |µ|,∆−
|δE|), the solutions of bound states can be obtained by
matching eigenstate wavefunctions at the interface (see
Supplemental Material[62] Sec. I.C). The eigenvalues are
determined by the following equation

[ei(α−β−2γ−) − eiϕ][ei(β−α−2γ+) − eiϕ] = 0, (5)

where cosα = (µ + E)/m, cosβ = (µ− E)/m, cos γ± =
(δE ± E)/∆ with α, β, γ± ∈ (0, π). Eq. (5) is particle-
hole symmetric, as changing the sign of E exchanges the
two terms on its left-hand side. In the limit of pinched-
off QPC (m → ∞), we obtain E = ±(∆ cosϕ/2 ± δE)
[8, 44]. The full subgap spectra in generic cases can be
solved numerically, as exemplified in Fig. 3.

Zero-energy solutions should satisfy α = β and γ+ =
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γ− = γ = arccos(δE/∆) ∈ (0, π), hence Eq. (5) is re-
duced to

ei(ϕ+2γ) = 1. (6)

When ε0 = 0, the zero energy solutions, occurring iff
ϕ = (2l+1)π with l being an integer, define two Majorana
operators

χ1 =

∫
dx
[
(ψ̃

(−)
R1 + iψ̃

(+)
L1 + iψ̃

(+)
R2 + ψ̃

(−)
L2 ) + h.c.

]
, (7)

χ2 =

∫
dx
[
(iψ̃

(+)
R1 + ψ̃

(−)
L1 + ψ̃

(−)
R2 + iψ̃

(+)
L2 ) + h.c.

]
, (8)

where ψ̃
(±)
R/Ln = [θ(−x)e(m sinα)x(cos fx ± sin fx) +

θ(x)e−∆xesR/Liµx]ψR/Ln with sR/L = ∓1 (here we set
~vF = 1). As a result of TRS in this idealized case,
χ1 and χ2 form a Kramers pair: Tχ1T

−1 = χ2 and
Tχ2T

−1 = −χ1 [63]. When ε0 is finite but small (i.e.
|δE|/∆� 1), Eq. (6) yields ϕ = (2l+1)π/(1− ε0ξ). The
zero-energy solutions shift to ϕ’s different from (2l+1)π,
owing to the finite penetration of the bound states into
the gapped SC, and are no longer exact Kramers part-
ners (see Supplemental Material[62] Sec. I.D). We will
neglect this subtlety in the following by assuming ε0 to
be sufficiently small.

Having established the presence of the MBSs at the
QPC-SC interface, we now discuss their detection. To
this end, the incorporation of the QPC in our proposed
setup was particularly useful as the QSH edge states re-
flected at the QPC naturally become probes of the MBSs.
In this case, the low-energy (E < ∆) effective Hamilto-
nian in the presence of a Majorana Kramers pair, con-
strained by TRS, has a generic form

Hπ = −i
∫ +∞

−∞
dx̃
{
ψ†+∂x̃ψ+ − ψ†−∂x̃ψ− + δ(x̃)

[
χ1(t+ψ+ + t−ψ− + h.c.) + χ2(t∗−ψ+ − t∗+ψ− + h.c.)

]}
,

(9)

where x̃ stands for the unfolded coordinate such that
ψ+(x̃) ≡ θ(−x̃)ψR1(x̃) + θ(x̃)ψL2(−x̃) and ψ−(x̃) ≡
θ(−x̃)ψR2(x̃) + θ(x̃)ψL1(−x̃); t± stands for the coupling
between the MBSs and ψ±. Hπ is manifestly time-
reversal symmetric. The scattering matrix that relates
the current amplitudes of the outgoing (electron and
hole) components of ψ± to those of the incoming compo-
nents can be obtained by using the formula [9]

Sπ(E) = 1− iW †(E +
i

2
WW †)−1W, (10)

W = −i
(
t+ t− t∗+ t∗−
t∗− −t∗+ t− −t+

)
, (11)

where W is the coupling matrix between the scattering

modes and the Majorana pair. This yields

Sπ(E) =
1

iE − Γ


0 iE −A C
iE 0 C∗ −A
A C∗ 0 iE
C A iE 0

 , (12)

where Γ = |t+|2 + |t−|2, A = t+t− − (t+t−)∗, C =
t2++(t2−)∗. We have chosen the outgoing basis in Eq. (12)
so that both the incoming and the outgoing bases are
ordered as (1e, 2e, 1h, 2h), where 1(2) stands for the
upper(lower) arm and e(h) stands for the electron(hole)
component of the original edge channels (cf. Fig. 1). We
immediately see that at E = 0, all normal scattering pro-
cesses, corresponding to the diagonal blocks in Eq. (12),
vanish; only local (A) and crossed (C) Andreev scatter-
ings remain. This scenario represents a fixed point for the
scattering corresponding to the presence of a Majorana
Kramers pair.

Away from this fixed point, the consequence of lifted
degeneracy at zero-energy can be investigated perturba-
tively by including an additional termHM (ϕ) = iEϕχ1χ2

(Eπ = 0) into Hamiltonian (9). In terms of the scatter-
ing matrix, this amounts to replacing E on the right-hand
side of Eq. (10) by E+Eϕσy with σy the Pauli matrix. To
the lowest order in Eϕ, the correction to the scattering
matrix in Eq. (12) is given by

δS(E) =
Eϕ

(iE − Γ)2


−C −A −Γ 0
A C∗ 0 Γ
−Γ 0 −C∗ A
0 Γ −A C

 , (13)

which suggests a suppression of crossed Andreev reflec-
tion and simultaneously an enhancement of normal scat-
tering processes when Eϕ becomes large compared to
max(|E|,Γ). Indeed this situation corresponds to an-
other (trivial) fixed point as shown next through sym-
metry analysis.

In order to understand the scattering of helical edge
states at the QPC-SC interface in a more general setting,
we go back to the original Hamiltonian (1) and define the
scattering matrix generically as [64]

Sn′ν′,nν(E) = i~vFGRn′ν′,nν(x′0, x0;E), (14)

where n, n′ = 1, 2 stand for the lateral edges,
ν, ν′ = e, h stand for electron or hole channels, and
the retarded Green’s functions GRn′ν′,nν(x′0, x0;E) =
1
i~
∫
dt eiEt/~θ(t)

〈
{ψLn′ν′(x′0, t), ψ

†
Rnν(x0, 0)}

〉
with ψe =

ψ and ψh = ψ† in terms of the original field operators
in Hamiltonian (1). Both x′0 and x0 are chosen far away
from the QPC so that the scattering channels are well-
defined; the explicit choice of x′0 and x0 is otherwise not
important.

The scattering matrices are constrained by PHS and
TRS, respectively, as (see Supplemental Material[62]



4

Sec. II.A):

Sn′ν′,nν(E,ϕ1,2) = Sn′ν̄′,nν̄(−E,ϕ1,2)∗, (15)

Sn′ν′,nν(E,ϕ1,2) = −snsn′Snν,n′ν′(E,−ϕ1,2), (16)

where ē = h, h̄ = e, and sn is defined below Eq. (3).
Eqs. (15) and (16) together imply that, at E ' 0 and
ϕ ' lπ, S takes the form

S0,π(E ' 0) =


0 b −ia1 c
b 0 c∗ −ia2

ia1 c∗ 0 b∗

c ia2 b∗ 0

 , (17)

in the same basis (1e, 2e, 1h, 2h) as in Eq. (12). Here,
a1 and a2, both real, stand for local Andreev reflections
involving either edge 1 or 2; b and c stand for normal
back-scattering and crossed Andreev reflection, respec-
tively, from one edge to the other. Note that normal
back-scattering within one edge is forbidden by TRS (di-
agonal terms vanish). By further using the unitarity con-
dition, S is limited down to two possibilities (see Supple-
mental Material[62] Sec. II.A):

ϕ ' 2lπ : c = 0, b 6= 0, a1 = −a2 ; (18)

ϕ ' (2l + 1)π : b = 0, c 6= 0, a1 = a2 . (19)

The latter case reproduces Eq. (12) by identifying a1 =
a2 = iA/Γ and c = −C/Γ. Physically, the above equa-
tions imply that the zero-energy scattering processes at
the QPC-SC interface will be entirely Andreev reflec-
tions, local and crossed, in the presence of MBSs at
ϕ ' (2l + 1)π; the crossed Andreev reflection probabil-
ity will be gradually suppressed to zero when ϕ is tuned
towards 2lπ, meanwhile normal scattering between edges
will become finite. This is again consistent with our pre-
vious result Eq. (13) based on perturbation to the effec-
tive Hamiltonian (9).

The switching between normal backscattering and
crossed Andreev reflection will be clearly manifested
in zero-temperature multi-terminal differential conduc-
tances, defined by Gmn = dIm/dVn. In particular, we
find at zero bias,

G21 = (|b|2 − |c|2)e2/h, (20)

which can be measured by biasing only contact 1 and
grounding contacts 2 and 3. This expression is valid
even in the absence of TRS, by interpreting in general
b as S2e,1e, and c as S2h,1e. When ϕ is tuned across a
multiple of π, G21 will oscillate with two sign flips in each
2π-period (see Fig. 4 upper panel) [65]. The switching of
the backscattering current nature can also be seen explic-
itly in the zero-frequency current cross-correlation func-
tion between contacts 1 and 2 (while contact 3 is always
grounded), defined by P12 =

∫∞
−∞ dt 1

2 〈{δÎ1(t), δÎ2(0)}〉
with current fluctuation δÎn=1,2(t) = În(t)−〈În〉. Within
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FIG. 4. Simulation results of two types of measurements on
our proposed setup: differential conductances (upper panel)
and zero-frequency current cross-correlators (lower panel), ob-
tained numerically by using the Bogoliubov-de Gennes form
of the Bernevig-Hughes-Zhang Hamiltonian [52]. These re-
sults verify and complement the features analyzed by using
the effective edge theory (see main text).

the scattering approach [60, 66–69], the scattering ma-
trix in Eq. (17) implies (see Supplemental Material[62]
Sec. II.B):

P
(+)
12 = 2

e3V

h
a2

1|b|2, P
(−)
12 = −2

e3V

h
a2

1|c|2, (21)

where P
(+/−)
12 is the current cross-correlator measured

with contacts 1 and 2 biased equally/oppositely. These
formulas, valid for low bias voltage at ϕ ' lπ, enable a
straightforward examinations of the suppression of nor-

mal backscattering (P
(+)
12 ) or crossed Andreev reflection

(P
(−)
12 ). More generally, we find that the following re-

lation holds for all ϕ (see Supplemental Material[62]
Sec. II.B and Fig. 4 lower panel):

P
(+)
12 + P

(−)
12 − P

(par.)
12 = 0, (22)

where P
(par.)
12 = −(e3V /h)(G11G21 +G12G22) is conven-

tionally called the partition noise [60]. The partition
noise is composed of multiplications of G’s, and hence
also exhibits sign-flipping oscillations with varying mag-
netic flux (see Fig. 4 lower panel).

So far our analysis relied on one-dimensional effective
edge theory and symmetry constraints. We further cor-
roborate our conclusions by performing numerical sim-
ulations with the microscopic Bernevig-Hughes-Zhang
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Hamiltonian [52] in two dimensions (see Supplemental
Material[62] Sec. II.C). These simulations include explic-
itly the metallic contacts in our proposed setup shown
in Fig. 1, and allow one to add various perturbations.
Our main results, shown in Fig. 4, agree very well with
the predictions of Eqs. (18-22). In addition, we verify
that the switching from normal to Andreev scattering
processes between two contacts (1 and 2) is a robust sig-
nature of the presence of the MBSs, which: i) remains
valid when a finite ε0 is taken into account; ii) persists
even when the QSH sample region covered by the SC is
slightly doped; iii) vanishes if the region covered by the
SC does not support any helical edge states (i.e. topo-
logically trivial).

Finally, we estimate the magnetic field and the tem-
perature required to access the predicted transport sig-
natures. From Ref. 70, the width of edge modes in
InAs/GaSb quantum wells is estimated to be about 250
nm, therefore the device width in our proposal has to
be larger than 500 nm. Combined with a device length
about 1 µm, a magnetic field of 2 mT is needed to gen-
erate a half of the magnetic flux quantum. From Ref.
61, the energy gap of the proximity-effect induced super-
conductivity in InAs/GaSb quantum wells was observed
to be around a few Kelvins, which is much larger than
the base temperature (about 10 mK) that can be read-
ily reached in a conventional dilution refrigerator. This
intermediate range allows for reasonable QPC tunability
for the coupling energy between the helical edge modes
and the Majorana Kramers pairs, such that the proposed
signature will not be suppressed by mere temperature ef-
fects. We emphasize that this signature, featuring tun-
able sign reversals of multi-terminal differential conduc-
tances, cannot be explained by other effects that can lead
to zero bias peaks in simple nanowire setups (see the dis-
cussion of interaction effects in Ref. 71 and 72), and hence
is a robust signature of Majorana Kramers pairs.
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[60] M. Büttiker, Physical Review B 46, 12485 (1992).
[61] X. Shi, W. Yu, Z. Jiang, B. A. Bernevig, W. Pan, S. D.

Hawkins, and J. F. Klem, Journal of Applied Physics
118, 133905 (2015).

[62] See Supplemental Material [url], which includes Refs.73.
[63] In fact, the strict presence of TRS will imply the exis-

tence of another pair of MBSs at the opposite side of
the Josephson junction. They are of no concern to us in
terms of the local measurements that we propose.

[64] D. S. Fisher and P. A. Lee, Physical Review B 23, 6851
(1981).

[65] Incidentally, the sum G1 = G11 +G21 +G31 = −2(|a1|2 +
|c|2)e2/h, reaches a quantized peak of magnitude 2e2/h
when ϕ is an odd multiple of π. Such quantization, how-
ever, is expect to require more stringent, currently unre-
alistic, experimental condition in order to observe than
the sign reversals of G21.

[66] M. P. Anantram and S. Datta, Physical Review B 53,
16390 (1996).
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