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Using path-integral Monte Carlo simulations we assess the core structure and mobility of the
screw and edge basal-plane dislocations in hcp 4He. Our findings provide key insight into recent
interpretations of giant plasticity and mass flow junction experiments. First, both dislocations
are dissociated into nonsuperfluid Shockley partial dislocations separated by ribbons of stacking
fault, suggesting that they are unlikely to act as 1D channels that may display Lüttinger-liquid-like
behavior. Second, the centroid positions of the partial cores are found to fluctuate substantially,
even in the absence of applied shear stresses. This implies that the lattice resistance to motion of
the partial dislocations is negligible, consistent with the recent experimental observations of giant
plasticity. Further results indicate that both the structure of the partial cores as well as zero-point
fluctuations play a role in this extreme mobility.

Although the possible existence of superfluidity in hcp
4He [1, 2] remains elusive [3], recent experiments on this
archetypal bosonic quantum solid continue to pose ques-
tions that remain unresolved. Among these are the obser-
vations of giant plasticity [4–6] and the apparent super-
fluidlike mass transport [7–11]. Although the observed
phenomena in the several experimental setups are quite
different, the interpretation of the results has invariably
involved the role of dislocations, the line defects that me-
diate plastic deformation in crystalline solids [12, 13]. In
particular, both the core structure as well as their mo-
bility have been involved in the discussion. While the
giant plasticity has been interpreted in terms of virtually
resistance-less motion of dislocations in the basal plane
of hcp 4He [4–6], the apparent superfluid mass transport
has been linked to the nature of the dislocation cores
themselves, suggesting that they might behave like 1D
Lüttinger-liquid systems promoting mass flux across a
network of superfluid dislocation cores [10, 11, 14–16].

Despite their prominent role in the interpretation of
these experiments, however, our knowledge regarding the
most fundamental properties of dislocations in hcp 4He
remains far from complete. For instance, although plas-
tic deformation is known to occur predominantly on the
basal plane [4, 17], there is no direct experimental insight
into their fundamental core structure and mobility. In
this context, atomistic modeling techniques provide use-
ful tools to extract such characteristics in a systematic
fashion [18]. However, for the case of hcp 4He, except for
a set of calculations based on a variational Jastrow-type
wavefunction [19], fully atomistic studies have remained
limited to dislocations with Burgers vectors aligned with
the c-axis [14, 15], which are not expected to play a signif-
icant role in the mechanical behavior of hcp 4He [17, 20–
22].

In this Letter we present an atomistic study of the
edge and screw dislocations with Burgers vectors in the

basal plane, investigating the fundamental structure of
their cores as well as the lattice resistance opposing their
motion. The basic computational framework is the path-
integral Monte Carlo (PIMC) method [23–26], which has
been the standard tool for atomistic the study of the
condensed phases of 4He [14, 27–33]. First, our results
clearly establish that basal-plane dislocations in hcp 4He
are dissociated into nonsuperfluid Shockley partial dislo-
cations separated by an area of stacking fault (SF) and
suggests that these dislocation cores are unlikely to play a
role in the proposed superfluid-core interpretation of the
mass flow experiments mentioned above. Furthermore,
we find the partial dislocation cores to be extremely mo-
bile, with their centroid positions fluctuating significantly
compared to the periodicity of the lattice perpendicular
to the dislocation lines, even in the absence of driving
stresses. This finding is consistent with the experimental
reports on giant plasticity and our results suggest that,
in addition to the structural characteristics of the partial
dislocations, zero-point effects play a role in this phe-
nomenon.

Our calculations are based on fully periodic cells con-
taining a dipole of screw/edge dislocations with opposite
Burgers vectors. The atomic configurations were pre-
pared from an initially defect-free crystal by introducing
atomic displacements according to the linear elastic so-
lutions for the strain fields associated with both disloca-
tion characters [12, 18]. To minimize the effect of peri-
odic image forces perpendicular to the basal plane [18],
the two dislocations of the dipole are placed on basal
planes at a distance equal to half the box height along
the [0001] direction, as shown for the screw dipole in
Fig. 1a). The corresponding cells contain 8064 and 7056
atoms for the screw and edge, respectively, at a molar
volume of 21 cm3, for which the Burgers vector magni-
tude is ∼ 3.66 Å. Equilibration of the systems was carried
out using by sampling atomic and cell configurations us-
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Figure 1. (Color online) a) Cell geometry with two screws
of opposite Burgers vectors placed on basal planes separated
by half the box height along the [0001] direction. b) Path
centroid positions after PIMC relaxation viewed along the
[1210]. Colors represent ranges of common-neighbor analysis
(see text). Red and green depict hcp and fcc-type atomic
environments, respectively. c) Centroids of two atomic planes
containing one of the dislocations. Green area represents SF.
Arrows depict partial dislocation Burgers vectors.

ing the isothermal-isostress ensemble approach [34] im-
plemented in the PIMC++ package [25]. We employ an
imaginary time step of τ = 1/40 K−1 and a path dis-
cretization in terms of 150 time slices, which corresponds
to a temperature of T = 0.267 K. Previous PIMC stud-
ies of the mechanical behavior of hcp 4He have shown
that this time step provides reliable results [32, 33]. A
pair action based on the Aziz [40] pair potential was used.
Only hydrostatic pressure (i.e., no shear components) was
applied to the maintain an average molar volume of 21
cm3. To analyze the atomic structures, path configura-
tions are stored after every 250th bisection move in the
PIMC runs. Permutation sampling was initially disabled
to reduce the computational effort associated with the
equilibration stage of the dislocation geometries but it
was invoked during a number of subsequent runs to assess
possible effects associated with Bose-Einstein statistics.

Figs. 1 b) and c) depict representative equilibrated
path-centroid configurations for the screw dipole cell.
Each atom is colored according to its common-neighbor
order-parameter value [41, 42], which distinguishes be-
tween different atomic coordination levels. Red and green
depict atoms in hcp and fcc regions, respectively, whereas
the other colors indicate intermediate coordinations. The
images clearly reveal the dissociation of the perfect screw
dislocation into two 30○ Shockley partials [12, 13], with
their cores shown as the light blue and white circles, sep-
arated by a ribbon of SF depicted in green. Subsequent
runs including permutation sampling reveal that these
partial cores do not exhibit any sign of superfluidity given
the absence of persisting permutation cycles. Analogous
dissociation also occurs for the edge dislocation as shown
in Fig. 2, with the perfect dislocation splitting up into two
60○ non-superfluid Shockley partials joined by an area of
SF. This area is wider than that for the screw disloca-
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Figure 2. (Color online) Configuration for the edge disloca-
tion after PIMC relaxation. Colors represent ranges of the
common-neighbor parameter (see text). Red and green de-
pict hcp and fcc-type atomic environments, respectively. a)
Path centroid positions viewed along the [1010] direction. b)
Centroids of two atomic planes containing one of the disloca-
tions. Green area represents SF area and arrows depict partial
dislocation Burgers vectors.

tion case, however, because of the larger edge component
of the 60○ partials [12, 13]. On the other hand, the dis-
similar equilibrium arrangements observed for the screw
and edge dipoles, with the former aligned vertically and
the latter set in an oblique pattern, are a consequence
of the different image stresses that occur in both cases
due to the periodic boundary conditions [34]. While van-
ishing in the respective equilibrium configurations, these
image stresses give rise to restoring forces for disloca-
tion configurations that deviate from them [43]. In the
absence of such image stresses, the equilibrium dissoci-
ation widths of isolated screw and edge dislocations are
expected to be 81 and 434 Å, respectively, as discussed in
the Supplemental Material [34]. This implies that basal-
plane glide dislocations in hcp 4He are effectively two-
dimensional defect structures bounded by non-superfluid
Shockley partial dislocations and indicates that the inter-
pretation of recent mass flow experiments in terms of a
network of 1D Lüttinger-liquid systems in the form of su-
perfluid dislocation cores [10, 11, 14–16] does not involve
basal-plane dislocations.

To analyze the dislocation core structure and mobility
in more detail we first examine the path-centroid config-
urations in terms of a disregistry analysis of the relative
displacement between the two atomic planes adjacent to
the slip plane, tracking its progress along the direction
perpendicular to the dislocation line. This is depicted in
Fig. 3a), which shows a typical example of this analysis
for a centroid snapshot obtained for the screw disloca-
tion cell. The circles and dots depict the atoms in the
layers immediately above and below the slip plane, re-
spectively. The screw component of the disregistry is
then monitored by measuring the vertical (i.e., screw)
displacement of the dots with respect to their enclosing
triangles (formed by circles) along each of the 8 horizon-
tal rows of such triangles. For each of these rows we then
extract dislocation-core parameters such as position and
core width by fitting the disregistry profile to the Peierls-
Nabarro (PN) model [12, 18], which, for the dislocations
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Figure 3. (Color online) Disregistry analysis for screw dislo-
cation configuration. a) Atoms in layers immediately below
(circles) and above (dots) slip plane. Screw disregistry is mea-
sured by monitoring the vertical position of dot with respect
to its enclosing triangle along 8 horizontal rows of triangles
(two shown). Dashed lines depict spline fits through set of 8
core positions as determined from fits to the PN model. b)
Representative fit of PIMC data for the disregistry u (dia-
monds, in units of the full Burgers vector b) as a function of
horizontal position x (also in units of b) to the PN-model of
Eq. 1 (red line). Corresponding partial dislocation positions
(xl, xr) and core widths (2 ζl, 2 ζr) are also marked.

considered here, takes the form

u(x) = c

π
(tan−1 [x − xl

ζl
] + tan−1 [x − xr

ζr
]) , (1)

with xl and xr the positions of the left and right partials,
respectively, ζl and ζr the half-widths of both cores, and
c an amplitude parameter. A representative fit of this
kind is shown in Fig. 3b).
The dashed lines in Fig. 3a) are splines through the set

of 8 core positions obtained from such PN-model fits and
serve as guides to the eye identifying both partial dislo-
cation lines. We find the centroid line fluctuations to be
small in all studied configurations, with their amplitude
being of the same order of magnitude as the confidence
intervals in the core positions parameters as determined
from the regression process. Therefore, in our further
analysis we will describe the core parameters in terms of
their mean values as obtained by averaging them over the
8 core positions along each partial dislocation line.
Fig. 4 displays the evolution along the PIMC simula-

tions of the line-averaged centroid partial core positions
for the lower screw and edge dislocations of Figs. 1 b) and
2 a), respectively. After an initial transient, both dislo-
cation configurations are seen to attain their equilibrium
structures in which the centroid positions of the partials
become stationary and the SF widths equilibrate at mean
values of (2.6±0.1) b, and (11.4±0.1) b for the screw and
edge dislocations, respectively. Despite the stationary
character of the centroid core positions, however, they
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Figure 4. (Color online) a) and b) Centroid core positions for
the left (diamonds) and right (squares) partial dislocations of
the dissociated screw and edge dislocations as a function of
PIMC snapshot number. Vertical axes are in units of the per-
fect Burgers vector b. Shaded areas between partial positions
denote SF widths. Mean partial dislocation core widths are
also indicated. Mean confidence intervals for PN fits of the
partial positions are ∼ ±0.3b and ∼ ±0.4b for the screw and
edge dislocations respectively. c) Histogram of partial core
positions relative to centroid partial core position as deter-
mined by fitting PN expression to 50 displacement profiles
per PIMC snapshot, each obtained from an average over 3
consecutive time slices.

are observed to fluctuate substantially, displaying digres-
sions of ∼ 1.9 b and ∼ 4.5 b along the [1010] and [1210] di-
rections for the screw and edge dislocations, respectively.
The fact that the magnitude of these fluctuations is more
than twice as large as the lattice periodicities perpendic-
ular to the dislocation lines (1

2

√
3 b and b for the screw

and edge dislocations, respectively) and given that these
occur in the absence of driving stresses and the presence
of restoring image forces represent a clear indication of
an effectively vanishing lattice resistance to dislocation
motion. From a structural point of view, the elevated
dislocation mobility is consistent with the diffuse charac-
ter of the 30○ and 60○ partial dislocation cores, with their
total displacement spread out across several (∼ 3 and 4,
respectively) atomic rows. Indeed, in classical crystals
such planar and rather wide cores with a partial Burgers
vector are known to experience very low lattice resistance
to their motion [44].

In the case of dislocations in a quantum crystal such as
hcp 4He an additional question of relevance is whether or
not quantum-mechanical zero-point effects, known to be
substantial in this system, may also affect dislocation mo-
bility. Indeed, even in classical metals such effects have
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been shown to play a role under certain conditions [45].
In PIMC simulations the finite extent of the ring poly-
mers represented by the imaginary time slices encodes
the quantum-mechanical uncertainty in the atomic po-
sitions in the system. Given that these observables also
characterize the dislocation core location through the pa-
rameters xl and xr in the PN model it seems plausible
that the atomic zero-point fluctuations may also give rise
to an intrinsic quantum-mechanical uncertainty in the
dislocation core position. To assess the possible magni-
tude of such uncertainties, we analyze the statistics of the
PN disregistry profiles corresponding to the set of 150
time slices that constitute the cyclic polymers for each
PIMC snapshot. To this end, we construct histograms
that record dislocation core position samples relative to
the centroid core location for the PIMC snapshot under
consideration, by fitting the PN expression to disregistry
profiles obtained by averaging over small groups of con-
secutive time slices. Fig. 4 c) shows a typical histogram
of this kind for the 60○ partial, determined by fitting
the PN expression to 50 disregistry profiles, each com-
puted by averaging over 3 consecutive time slices for a
given PIMC configuration and repeating this analysis for
a set of 200 PIMC snapshots after reaching the station-
ary state. In view of the large atomic zero-point fluctu-
ations in hcp 4He, which lead to disordered-like patterns
for single-slice configurations, the motivation for using
averages over 3 time slices is that this number is suf-
ficiently large to discern the crystallinity of the system
and enable characterization of the dislocation configura-
tions (i.e., giving PN fits with a root-mean-square error
smaller than 15 %), yet small enough to appreciate the
magnitude of the intrinsic zero-point fluctuations of the
dislocation parameters.

The distribution is approximately Gaussian with a
standard deviation of ∼ 1.1 b, which is of the order of
the distance between two adjacent lattice rows that can
host the partial dislocation core. This suggests that the
intrinsic variations in the partial core position due to the
zero-point fluctuations of the 4He atoms are in fact ap-
preciable, with different groups of time slices describing
the core position of the dislocation at distinct lattice posi-
tions. Not only does this observation highlight the intrin-
sic quantum uncertainty in the position of the dislocation
line at low temperatures, it also suggests that, in absence
of significant thermal agitation, the zero-point fluctua-
tions effectively eliminate any resistance to the disloca-
tion’s motion, with the defect being essentially free to
move through the lattice.

In summary, we have carried out a PIMC study into
the structure and mobility of basal-plane dislocations in
hcp 4He. Our results clearly establish that basal-plane
dislocations in hcp 4He are dissociated into nonsuper-
fluid Shockley partial dislocations separated by areas of
stacking fault (SF). This indicates that these disloca-
tion cores are unlikely to be involved in the proposed

superfluid-core interpretation of recent mass flow exper-
iments [10, 11, 14–16]. Furthermore, we find the intrin-
sic lattice resistance to basal-plane dislocation motion to
be effectively vanishing, with the dislocation lines fluc-
tuating across substantial distances even in the absence
of driving stresses. This is consistent with the experi-
mental observations of giant plasticity [4–6] in the basal
plane and, in addition to the wide character of the par-
tial dislocation cores, our results suggest that zero-point
fluctuations play a central role in this phenomenon.
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