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Traditional methods of quantum state characterization are impractical for systems of more than
a few qubits due to exponentially expensive post-processing and data storage, and lack robustness
against errors and noise. Here, we experimentally demonstrate self-guided quantum tomography
performed on polarization photonic qubits. The quantum state is iteratively learned by optimizing
a projection measurement without any data storage or post-processing. We experimentally demon-
strate robustness against statistical noise and measurement errors on single qubit and entangled
two-qubit states.
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Quantum technologies require high fidelity prepara-
tion, control and characterization of quantum states,
for application in quantum metrology [1], simulators [2],
and computers [3]. Recent advances in control of sev-
eral qubits have enabled demonstrations of quantum er-
ror correction [4] and boson sampling [5, 6]. Standard
quantum tomography (SQT) has been the cornerstone of
quantum state characterization for decades [7–9] and re-
quires performing and storing data from an exponentially
large number of projection measurements. Additionally,
SQT has an exponential post-processing cost to perform
a state-estimation inverse problem which requires, for ex-
ample, maximum likelihood estimation to avoid unphys-
ical results. The scaling and additional post-processing
cost make SQT impractical for the size of quantum states
being prepared today [10, 11]. The reliability of SQT for
all system sizes is limited by sensitivity to statistical noise
and experimental errors. Unless modified at additional
resource cost [12], SQT fails in the presence of measure-
ment errors [13].

Adaptive quantum tomography (AQT) has demon-
strated improved efficiency and precision by using state
dependent tomographic measurements [14–20]. AQT re-
lies on solving an optimization problem using previous
results to select the next measurement to be performed.
As a result, AQT is as computationally expensive as SQT
and likewise is sensitive to statistical noise and experi-
mental errors.

Self-guided quantum tomography (SGQT) is an au-
tonomous, robust and precise method for characterizing
quantum states [21]. Here, we demonstrate the perfor-
mance and robustness of SGQT in several one- and two-
qubit experiments. SGQT treats tomography as a pro-
jection measurement optimization problem using an iter-
ative stochastic gradient ascent algorithm [22]. SGQT is
therefore robust against both statistical noise and exper-
imental errors, it does not require the storage of expo-
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FIG. 1. (a) The unknown quantum state that we want to
characterize is shown as a red Bloch vector and the current
estimation is shown as a blue Bloch vector. (b) The algorithm
estimates the gradient in a stochastically chosen direction by
performing expectation value measurements with the green
and purple projectors. (c) The algorithm steps in the direc-
tion of the highest expectation value and the current estimate
of the state is updated. (d-f) The gradient is estimated again
and the process repeated for a set number of iterations.

nentially large data sets, and does not require any data
post-processing. SGQT avoids many of the pitfalls of
SQT and AQT at small added cost in the number of
different measurement settings required.

SGQT iteratively learns the quantum state through
maximising the expectation value of a projection mea-
surement. The algorithm is graphically illustrated in Fig.
1. The unknown quantum state ρf is shown as a red
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Bloch vector and the current estimate of the state at it-
eration k is |φk〉, shown as a blue Bloch vector in Fig.
1a. A direction ∆k is chosen stochastically and the ex-
pectation values of projectors |φk ± βk∆k〉 are measured,
shown as green and purple Bloch vectors in Fig. 1b. The
expectation values are measured as

E(ρf , |φk ± βk∆k〉) = 〈φk ± βk∆k| ρf |φk ± βk∆k〉 , (1)

where βk = b
(k+1)t controls the gradient estimation step

size, with b and t as algorithm parameters. The expec-
tation value gradient in the direction ∆k is estimated as

gk =
E(ρf , |φk + βk∆k〉)− E(ρf , |φk − βk∆k〉)

2βk

. (2)

Next, the estimate of the state is updated to |φk+1〉 =
|φk + αkgk∆k〉 in the direction of highest expectation
value, where αk = a

(k+1+A)s is the step size which de-

creases with iteration number k, and A, a and s are al-
gorithm parameters. The state |φk+1〉 is shown as a blue
Bloch vector in Fig. 1c and this process is repeated until
termination at a set number of iterations. The final esti-
mate of the state is the final projection |φN 〉, where the
number of iterations N is chosen from numerical simu-
lation and experimental trials, however, in principle one
could predict the necessary number of iterations from
the required fidelity, size of the quantum system and the
level of noise. Here, we have not implemented such a
method, however, will be included in future work. The
algorithm parameters A, a, b, s and t can be asymp-
totically optimized offline. The asymptotically optimal
values are s = 1 and t = 1

6 , however it was often found
that s = 0.602 and t = 0.101 performed well. In gen-
eral, the other parameters we kept as a = 3, b = 0.1 and
A = 0. The algorithm is robust against noisy gradient
estimates and as such SGQT is robust against statistical
noise and measurement errors.
We experimentally demonstrate SGQT using polariza-

tion encoded photonic qubits. We generate pairs of in-
distinguishable photons from a spontaneous parametric
down conversion source [23] and prepare heralded sin-
gle qubit and entangled two-qubit states using motor-
controlled rotating waveplates. Projection onto any one-
or two-qubit separable state is implemented using further
motor-controlled waveplates and polarizing beam split-
ters (see Supplementary Material for full experimental
details). We calculate the expectation value in Eq. 1
by measuring the number of photons recorded as a pro-
portion of the total photon flux for a fixed integration
time.
We firstly demonstrate the robustness of one-qubit

SGQT against statistical noise by reducing our photon
count rate such that, with the minimum integration time,
we use on average seven photons per iteration of the al-
gorithm. In this regime, Poissonian noise on the photon
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FIG. 2. We perform SGQT in a regime where only seven
photons on average are used per iteration of the algorithm.
(a) A single SGQT route for each target state is plotted on
the Bloch sphere. (b) The red, green and purple points show
the average fidelity of SGQT for each target state. The red
line shows the average fidelity across all target states. The
blue points show the average fidelity of SQT across all target
states for different total photon count. (c) The table compares
fidelity of SGQT with ∼ 280 photons to SQT with ∼ 280,
∼ 3.9x103 and ∼ 2x105 photons used.

count is very high [24]. We perform SGQT on three tar-
get states using the minimum integration time and repeat
each run ten times. On the same target states, we per-
form SQT with a range of integration times to control
the total number of photons used, repeating each mea-
surement ten times.

In order to benchmark our results, we obtain a high
precision estimate of the target state using SQT with
a high count rate and long integration time to reduce
Poissonian noise. The total photon count is ∼ 2x105

and we calculate an expected precision of 99.9 ± 0.1%.
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To benchmark the performance of SGQT and SQT with
a low photon count rate, we calculated the fidelity to
this high precision estimate [25]. We emphasize that we
do not expect to see optimal convergence in the fidelity
to the benchmark state since our estimate is converging
toward the true physical state.

Figure 2a shows the route of one SGQT run for each
target state plotted on the Bloch sphere. We set the
starting estimate to be |0〉, but this can be any state.
Figure 2b shows a log-log plot with fidelity of SGQT and
SQT against the number of photons used. The red, green
and purple points are the average fidelity of SGQT for
each target state. The red line is the average fidelity
across all target states and the band gives one standard
deviation of error. The blue dots are the average fidelity
of SQT across all target states. SQT on one-qubit re-
quires 4 measurements and therefore a minimum of 28
photons are used. For all points, SGQT records a greater
fidelity than SQT, demonstrating enhanced robustness
against high levels of statistical noise. At the final itera-
tion after ∼ 280 photons have been used, SGQT achieves
a fidelity of 99.3± 0.2%, whereas SQT records a fidelity
of 96.7± 0.6%. To reach the same fidelity, SQT requires
an order of magnitude more photons. Figure 2c shows a
table comparing fidelity against number of photons used
for SGQT and SQT. In a high noise regime, this result
demonstrates that SGQT is far more resource efficient
than SQT.

To compare robustness against one-qubit measurement
errors, we perform SGQT and SQT in a regime where we
have large uncertainty in the projection measurement.
We engineer this level of uncertainty by applying ran-
dom errors to the waveplate settings. SQT and AQT re-
quire high precision of each projection measurement set-
ting, whereas SGQT is robust against independent mea-
surement errors. We apply four levels of waveplate un-
certainty and perform SGQT and SQT ten times each,
and measure the average fidelities, again benchmarked
against long integration SQT without applied errors.

Figure 3 presents the average fidelity of SGQT and
SQT for each level of error. The results show that SGQT
outperforms SQT after only ∼ 10 iterations and after 40
iterations the infidelity (1-fidelity (F )) of SGQT is up to

89% lower than SQT, calculated as
FSGQT−FSQT

1−FSQT
, and will

continue to decrease as numerically studied in ref. [21].
These results demonstrate the robustness of SGQT to
significant measurement errors. For this demonstration
we reduce statistical noise by increasing the photon count
rate to ∼ 5x103 per iteration, however, in the presence of
both significant statistical noise and measurement errors,
SGQT will still converge with high fidelity.

Extending SGQT to a greater number of qubits sim-
ply requires a parametrization of the projection measure-
ment, which the algorithm can optimize to find the max-
imum overlap with the physical state. In order to be

(a)

(b)

FIG. 3. (a) Fidelity of SGQT with varying levels of exper-
imental error. Points are the average of ten repetitions and
the band gives one standard deviation of error. SQT is per-
formed with the same levels of experimental error, repeated
ten times and the fidelities shown as solid lines. (b) Table
comparing fidelity values for S6QT after ten repetitions (40
measurements) and SGQT after 40 iterations.

universal, the algorithm requires any projection measure-
ment, including entangling measurements to estimate the
gradient from Eqs. 1 and 2 [21]. We next demonstrate
the performance and robustness of SGQT to characterize
a two-qubit entangled state. However, in this experiment
we use only local measurements which are available in our
setup and, therefore, we cannot use the expectation value
calculated in Eq. 1 to estimate the gradient. Instead we
perform a subset of Pauli measurement M at each itera-
tion of the algorithm, which is insufficient for SQT, but
gives partial knowledge of the target state ρf from which
we calculate the fidelity to the current estimate of the
state |Φk〉 as

F̃ (ρf , |Φk〉) =
1

|M |

∑

i∈{M}

Tr(ρfP
(2)
i )

〈Φk|P
(2)
i |Φk〉

, (3)

where |M | is the number of Pauli measurements per itera-
tion and P (2) = {σI ⊗σI , σI ⊗σX , σI ⊗σY , . . . , σZ ⊗σZ}

are the two-qubit Pauli matrices [26, 27]. F̃ (ρf , ·) re-
places E(ρf , ·) in Eq. 2 to estimate the gradient. In this
context, existing AQT techniques would select measure-
ments based on the solution of an optimization problem,
whereas, SGQT selects a random set of measurements
at each iteration and is thus much more computationally
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FIG. 4. We perform SGQT on two qubit states by taking a random subset of Pauli measurements at each iteration. We

present the state in terms of Pauli measurement expectation values, where element i, j = 1
4
〈Φk|P

(1)
i ⊗ P

(1)
j |Φk〉 and P (1) =

{σI , σX , σY , σZ} are the one-qubit Pauli matrices. (a-e) The estimate of the state at different points of the algorithm run with
eight measurements per iteration. The fidelity is measured against high precision SQT. (f) The high-precision estimate of the
state measured with SQT using a long integration time to reduce statistical noise. (g) The algorithm was run with eight, six,
four and two measurements per iteration and the fidelity of the state estimate is plotted. The table below compares fidelities.
(h) We compare performance of SGQT and SQT in the presence of high levels of statistical noise and measure fidelity against
the number of photons used. (i) We engineer measurement errors in waveplate rotations and measure the fidelity of SGQT and
SQT with four levels of error. We repeat SQT to match the number of measurements of SGQT and average the results. Both
(h) and (i) use eight measurements per iteration.

efficient.

We experimentally demonstrate SGQT on a two-qubit
maximally entangled Bell state |Ψ−〉 = 1√

2
(|01〉 − |10〉).

We run the algorithm taking a random subset of Pauli
measurements per iteration. Figure 4 presents the results
of the algorithm. Figures 4a-e show the state estimate
throughout the algorithm using eight measurements per
iteration, presented as Pauli measurement expectation
values. Figure 4f shows the target state as measured
with long integration SQT and the fidelity to the final
SGQT estimate is 99.6 ± 0.2%. Figure 4g presents the
fidelity of SGQT against iteration number for a range of
measurements per iteration. It is clear that with eight,
six and four measurements per iteration (red, blue and
green lines) the algorithm converges with high fidelity
after 100 iterations, however, with two Pauli measure-
ments per iteration the algorithm appears not to con-
verge, which could be a result of an insufficient number
of iterations, or insufficient fidelity precision from Eq. 3.
Figure 4j presents the final fidelities.

We demonstrate the robustness of two-qubit SGQT
against statistical noise by again reducing the photon
count rate to a regime where on average seven photons
are used per measurement. We also perform SQT us-
ing an equivalent total number of photons to allow direct

resource comparison. Figure 4h presents the fidelity of
SGQT where eight measurements are used per iteration
and SQT using the same total number of photons. SGQT
achieves 68% lower infidelity than SQT, which again re-
quires around an order of magnitude more photons to
achieve the same level of fidelity. The fidelity values are
presented in Fig. 4k, demonstrating enhanced robustness
of two-qubit tomography, while only using local measure-
ments.

We finally investigate robustness against measurement
errors on two-qubit SGQT by applying waveplate uncer-
tainty. With the same four levels of error as the one-qubit
case, we perform SGQT and SQT on the entangled Bell
state. Figure 4i presents the fidelity of SGQT against
iteration number with experimental error applied. SQT
is repeated with the same total number of measurements
and the results averaged. The SQT fidelities are plotted
in Fig. 4i as horizontal lines for each level of error. Using
the same total number of measurements, SGQT achieves
up to a 92% lower infidelity than SQT, presented in Fig.
4l.

We have demonstrated the advantages of SGQT over
standard techniques for characterising quantum states in
a range of one- and two-qubit experiments. In experi-
ments where there is a high level of noise or large exper-
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imental error, SGQT is shown to achieve higher fidelity
than with SQT measurements alone on both single qubit
and two-qubit entangled states. This method requires
only local projection measurements, however, if entan-
gling projections are available then the original form of
the algorithm can be used. In our implementation, the
algorithm finds the pure state with the greatest overlap to
the physical state. In the single qubit case, the purity can
be calculated by comparing the photon count at the final
projection to the photon count with an orthogonal pro-
jection. While in this experiment, the states we prepare
are highly pure and this additional step is unnecessary to
achieve high fidelity, future work will report on extend-
ing this technique to larger systems and demonstrate the
performance of SGQT on arbitrary mixed states.
While the cost of SGQT is still exponential with the

system size in the number of measurements, it does
not require data storage, or computationally expensive
post-processing and maximum likelihood estimation to
characterize an unknown quantum state. This algorithm
can also be applied to state preparation and quantum
device control [28]. SGQT opens future pathways
toward robust characterization of quantum systems with
dimensions where standard tomographic techniques have
already become impractical.
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