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Abstract

We present analytical results for long-term growth rates of structured populations in randomly

fluctuating environments, which we apply to predict how cellular response networks evolve. We

show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively

under random (i.e. non-periodic) environments. We identify the evolutionary phase diagram

for simple response networks, which we show can exhibit both continuous and discontinuous

transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral

epidemics to emergence of drug resistance.
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Evolutionary dynamics take place in randomly fluctuating environments, and the repro-

ductive growth and survival of individuals can be strongly influenced by changing conditions,

impacting processes on multiple scales from populations to ecosystems [1–4]. To survive in

a changing environment, individuals must adapt their phenotypic states to the external fluc-

tuations according to different strategies. Several classes of survival strategies with known

genetic examples have been studied in microorganisms. Sensor-mediated responses, which

turn on or modulate the activity of specific proteins in response to chemical changes in the

environment, are well-known in metabolism [5], chemotaxis [6], and stress responses [7]. An-

ticipatory networks, which activate specific genes before a highly predictable environmental

change, are known e.g. in E. coli subjected to various fluctuations [8, 9], or in circadian

rhythms such as in cyanobacteria [10]. Stochastic switches, in which specific genes or entire

genetic pathways can be randomly switched on or off without sensing, have been character-

ized in a wide range of systems [11–13]. The gene regulatory networks that encode these

strategies operate in a noisy cellular environment, and have been extensively studied using

stochastic process methods [14–17]. These networks are subject to evolutionary tuning, yet

understanding precisely how they have been tuned, the specific benefits they confer, and

the timescales and pressures under which they have evolved, are fundamental questions that

remain largely unanswered.

Theoretical studies have explored the adaptive utility of different survival strategies [18–

28]. For example, analytical work has shown that stochastic switches can outperform sensor-

mediated responses when environments change sufficiently slowly (periodically or randomly)

and the costs of sensing become prohibitive [23]. At the other extreme, for rapid fluctuations

(e.g. faster than the cell division rate), it becomes advantageous to lock into a single pheno-

typic state [24, 28], also known as a ‘generalist’ strategy, and avoid the costs of phenotypic

switching. However, between these two limits of fast and slow fluctuations, there is a wide

range of intermediate fluctuation timescales (e.g. between 1 – 102 generations) which have

been largely inaccessible to analytical calculations, yet which are critical in terms of phys-

iological adaptations of bacteria [29]. By approximating phenotypic states as a continuum

variable, a broad range of timescales can be analyzed [4, 18, 30], though such formulations

are often difficult to relate to complex genetic networks, which can have multiple expression

states that are not naturally mapped to a single real variable. Further progress requires

the ability to calculate analytically long-term growth rates in a randomly fluctuating envi-
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ronment in discrete phenotype models, a problem that has so far been solved only in the

two limits mentioned above. Here, we provide a general method of solution, revealing novel

evolutionary ‘phases’ that occur due to environmental randomness and transitions between

them that may be related to different routes of evolving genetic circuits. Remarkably, in the

intermediate regime, we identify a class of survival strategies – responses with memory – that

we show is optimal exclusively under randomly changing environments, and which, unlike

stochastic switching [21, 23], does not confer benefits for periodically changing environments.

We consider a population composed of m distinct phenotypes undergoing asexual growth

in a realization of environments E(t). The dynamics of the environment is described with

a continuous random variable E in chronological time t. We let Ni(t) be the number of

individuals with phenotype i, which summed over i yields the total population size N .

Phenotypes i = 1, . . . ,m are taken to grow exponentially with rate fEi that depends on the

environment at time t. Individuals can switch from phenotype j to i at a rate hEij. The

total rate of switching from phenotype j to all other phenotypes is hEjj = −
∑

i 6=j h
E
ij. To

study competition between phenotypes we consider phenotype frequency ni(t) = Ni(t)/N(t),

which satisfies:
dni
dt

=
(
fEi − f̄E

)
ni +

m∑
j=1

hEijnj , (1)

where f̄E ≡
∑

i f
E
i ni is the average fitness.

If the environment does not change in time, the phenotype with highest fitness will

outgrow the others, but if environments fluctuate in both character and duration, dif-

ferent phenotypes will receive selective advantage at different times. To predict the out-

come of competition in fluctuating conditions we will use the long-term growth rate, Λ =

limt→∞ t
−1 logN(t), or equivalently:

Λ = lim
t→∞

1

t

m∑
i=1

∫ t

0

f
E(t′)
i ni(t

′)dt′ . (2)

It has been shown by a polymer-population mapping that Λ corresponds to negative free

energy [31], hence (2) defines a surface spanned by hEij similar to a free energy landscape.

Organisms optimize their growth and thereby their chances of survival by finding a matrix

of transition rates that maximizes Λ in fluctuating environments. Predicting this optimum

presents a key problem across multiple fields, from biology to control theory and finance

[25, 27, 30, 32].
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Figure 1 shows fluctuations in E(t) that can represent changes in temperature, nutrient

concentration or chemical composition of the substrate (seasonal fluctuations of sea salinity,

daily glucose blood levels, etc.), or shifts between various types of nutrients, commonly

employed in laboratory assays. We will consider fluctuations that can be reliably coarse-

grained into one of r discrete environmental states E ∈ {1, . . . , r}, leaving the choice of

states to be determined by biological and experimental considerations. One realization of

environments E(t) now consists of blocks of distinct environmental states. The duration of

each block, τenv, is a random variable drawn from a probability distribution P (τenv), which

could in general depend also on E(t) [33].

We let Xk
i (t) denote the solution of (1) in the constant environment specified by the envi-

ronmental state k, where the variable t now runs over the duration of environmental block,

0 ≤ t ≤ τenv, and we have specified the initial condition at t = 0, Xk
i,0, to equal the frequency

of that phenotype at the end of the previous environment (Fig. 1, bottom). The long-term

growth rate (2) is then computed by partitioning continuous time into environmental blocks

whose durations are drawn from P (τenv), while keeping track of initial conditions when en-

vironments change. Since Λ is self-averaging in the sense that its value does not depend

on the specific realization of environments [31], we can obtain analytic results by treating

history statistically in the following way. Let Xk
i denote the average frequency of phenotype

i at the end of environment k,

Xk
i =

∫ ∞
0

Xk
i (τenv)P (τenv)dτenv , (3)

which explicitly depends on its initial condition, Xk
i,0. The mean-field approximation re-

places the initial condition with the average phenotype frequency at the end of previous

environment:

Xk
i,0 =

r∑
l=1

Pl|kX
l
i , (4)

where Pl|k corresponds to probability that environment l precedes k. In the two-environment

model shown in Fig. 1, Pl|k = 1 if l 6= k and 0 otherwise. Solving the self-consistent system

of equations (4) for the set of constants Xk
i,0 allows us to explicitly compute the long-term

growth rate as an average growth rate across all environmental states [34]:

Λ ∼=
1

τ̄env

m∑
i=1

r∑
k=1

Pk

∫ ∞
0

P (τenv)dτenv

∫ τenv

0

fki X
k
i (t)dt , (5)
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where τ̄env denotes the average duration of environments and Pk is the frequency at which

environmental state k occurs in a random realization of environments.

The optimum in Λ is achieved when the timescales of response, (hkij)
−1, are collectively

tuned to the statistics of environmental fluctuations. Finite transition rates will result in sus-

tained diversity of phenotypes, while the characteristic times over which phenotypic states

j are stably inherited, |hkjj|−1, are a measure of cells’ phenotypic memory [19]. Populations

composed of cells with long-lived phenotypic memory are expected to have a stronger de-

pendence of initial conditions on recent environments than that captured by mean-field. By

including history order by order into initial conditions, we are able to correct the mean-field

approximation.

The formulae for corrections in history will be simplified with the following notation.

We write time-dependent solutions of (1) in terms of a non-linear time evolution operator Ô

acting on the initial state, Xk
i (τ) = Ôk

τ

[
Xk
i,0

]
. In general, the initial condition in environment

k will maintain information about the duration and state of all preceding environments

{q1, q2, . . .}, which we write as Xk
i,0 = Xk

i,0 (τ q11 , τ
q2
2 , . . .). To leading order we average over

all but the most recent environment,

Xk
i,0(τ

q
1 ) =

r∑
l=1

Pl|q

∫ ∞
0

Ôq
τ1

[
Xq
i,0

(
τ l2
)]
P
(
τ l2
)
dτ l2 . (6)

Generalization to higher orders can be obtained by successive application of time evolution

operators Ô
qj
τj , j = 2, 3, . . . on the leading order correction [34]. Computing corrections will

generally require the use of numerical methods where the mean-field solution can provide

initial estimates for locations of optima. Approximations to Λ are obtained by averaging (5)

over the timescales (τ1, τ2, . . .) and environmental states (q1, q2, . . .) encoded in the initial

conditions.

To illustrate the predictive power of this framework, we consider a simple two-phenotype

system that utilizes a gene regulatory network to respond to environmental conditions. One

famous example of a response network is the lac operon in E. coli, which activates metabolic

lac genes in response to an environment containing lactose, and subsequently turns them off

to conserve energy when the preferred nutrient, glucose, becomes available. The result of lac

gene expression is the accumulation of long-lived lac proteins, which decay over a timescale

of ∼ 10 cell divisions and provide phenotypic memory [35]. In fluctuating glucose-lactose

environments, phenotypic memory allows cells to avoid going through a growth lag each time
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lactose is encountered [35]. We now analyze whether and when such memory will provide a

long-term evolutionary advantage for bacteria.

We model a generic gene regulatory network that under a specific stressful condition

(S) induces a response protein required for growth in that environment. The individuals

expressing the protein (ON phenotype) will grow at a rate b (benefit), whereas the OFF

phenotype will consist of individuals that maintain low protein levels, which therefore do

not grow. The transition rate from OFF to ON in environment S will be given by τ−1ON and

corresponds to the inverse time needed to sense the change in the environment and to induce

high enough levels of protein to resume growth. When stress is removed, which we denote as

environment G (growth), protein returns to low levels due to dilution and diffusion processes

that happen on timescale τmem. The parameter c specifies the cost of protein production in

G [36]. The equation (1) for the ON phenotype frequency, XE(t), where 0 ≤ t < τenv and

E = S,G reduces to:

ẊS = bXS(1−XS) + τ−1ON(1−XS)

ẊG = −cXG(1−XG)− τ−1memX
G,

(7)

We compare two extreme strategies of (i) a constitutive response (τmem → ∞) versus

(ii) a memoryless response (τmem = 0). The long-term cost of (i) is given by the cost of

maintaining memory during G, or cτenv, while the cost of (ii) is measured by the growth

loss during the lag phase in S, given by bτON [34]. Intuitively, when τenv � τON , cells are

unable to respond sufficiently fast to changes in the environment. In this case, since the

cost of memory is lower than the cost of lag phase, cells will maintain sustained growth by

constitutively expressing the protein. Alternatively, when environments last sufficiently long,

memory will become too costly and cells will improve their long term growth rate by rapidly

degrading the protein. We observe these two limits in a periodic environment by plotting

Λ as a function of protein degradation rate τ−1mem and environmental duration τenv (Fig. 2,

inset). For short τenv maximal growth is achieved at infinite memory, a constitutive response.

As τenv increases, a second optimum is independently formed at zero memory, corresponding

to a memoryless response. Around cτenv ≈ bτON the optimal strategy changes abruptly from

constitutive to memoryless, without passing through intermediate, finite memory states.

Remarkably, in this model finite memory responses are optimal exclusively for random

environmental fluctuations. Figure 2 shows the long-term growth rate in fluctuating envi-

ronments (solid circles) overlaid with the mean-field prediction (solid line) and the leading
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order correction (dashed line) as functions of memory. Each gray circle is computed by nu-

merically evolving the system of equations (7) in a random realization of environments, then

averaging over many such simulations. The mean-field approximation is exact in the two

opposing limits of constitutive and memoryless response, while at finite memory it slightly

overestimates the long-term growth rate; it can therefore be used to distinguish if the indi-

viduals will benefit from maintaining finite phenotypic memory, or if they are more likely to

evolve to one of the two limiting scenarios.

To determine how the evolution of response networks would be affected by changes in

the statistics of environmental fluctuations, we calculated a phase diagram for memory op-

timization in the above model. Figure 3A shows a phase diagram obtained for a choice of

gamma-distributed environmental durations, a two-parameter family of distributions speci-

fied by the mean τ̄env and variance σ2
env that are mapped in a one-to-one manner to the two

axes shown. The vertical axis corresponds to the mean environmental duration, whereas the

horizontal axis given by the Fano factor, σ2
env/τ̄env, measures the spread of the distribution

of environmental durations. For tight distributions (i.e. a nearly periodic environment),

the only possible optimal memory levels τ ∗mem correspond to constitutive (τ ∗mem = ∞) or

memoryless (τ ∗mem = 0) responses. Since the transition line is nearly flat in this regime, the

optimal strategy is largely determined by the value of τ̄env. For wide distributions, both

small and large values of τenv occur sufficiently often that finite memory can be optimal

(0 < τ ∗mem < ∞). Finite memory allows cells to avoid lags during fast fluctuations while

capping the cost of memory at cτ ∗mem � cτenv during long-lasting occurrences of environment

G.

By analogy to phase diagrams of condensed matter systems, both continuous (Fig. 3A,

dashed line) and first order (solid line) evolutionary phase transitions exist between these

phases. First order phase transitions exhibit a jump in an order parameter (τ ∗mem) as an

external parameter (τ̄env) crosses a threshold value. Two such transitions are shown in Fig.

3B, D. As we increase τ̄env while keeping the Fano factor fixed, the network evolves from the

old optimum to a new global optimum emerging at zero memory. This type of a transition

corresponds to an abrupt change in the structure of response network, such as addition or

deletion of a constituent gene. At the continuous phase transitions the growth rate optimum

varies across a continuous range of τmem (Fig. 3C, E), and biologically it could correspond

to a tuning of interactions among genes in the network (see e.g. [27]).
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The phase diagram also features a triple point (dark circle) where the three phases sep-

arated by discontinuous and continuous phase transitions meet [37–39] and a critical point

(light circle), where a sharp boundary between memoryless and finite memory response

phase becomes continuous. Constant memory curves (solid gray lines) above the critical

memory curve (solid white line) end at the the critical point, while curves below the critical

memory end at the boundary. The critical point in the mean-field approximation occurs

when cτ env ≈ bτON , although small perturbations arising from noisy responses may modify

cost-benefit tradeoffs resulting in small shifts in the location of transitions [34].

First order phase transitions involve coexistence of the two phases at the boundary.

When growth dynamics and environmental structures become more complex, coexistence

for a wider range of fluctuations becomes possible [34]. The assumptions of exponential

growth and infinite nutrient availability in our simple model are not crucial for the mean-

field approximation and its underlying phase structure to hold on a more general level [34].

For example, in chemostats where individuals compete for limited resources and popula-

tion growth and response induction depend on nutrient concentration, the same approach

is successful at predicting the outcome of competitions. Likewise, the theory can be used

to determine when finite population size effects become important, and to show that these

effects are expected to be negligible in typical bacterial populations. Anticipatory regulation

can also be analyzed within the same framework, and seen to be beneficial when environ-

mental fluctuations are highly predictable. These results motivate further studies of more

complex population and ecological dynamics.

Due to the small number of parameters and a rich phase structure, the model described

here is useful for understanding fundamental aspects of evolution, specifically principles

by which regulatory networks respond optimally under a wide spectrum of fluctuation

timescales. Since our model does not incorporate costs of expressing sensor proteins, sensing

will always be a preferred strategy. When sensing costs are accounted for, stochastic net-

works that avoid sensing costs can become advantageous, and the model will exhibit a more

complex phase diagram that features transitions to a stochastic switching phase [23]. Ad-

ditional evolutionary phases likewise exist in the limit of a continuum of phenotypic states,

as shown in several different contexts [4, 18, 30]. While the coarse-grained nature of our

model omits details at the molecular level, and is not designed to quantitatively predict gene

expression levels, extensions that incorporate realistic models of metabolism, such as [40],
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have been used to predict gene expression to very close agreement with experiments [35].

In summary, we have mathematically described evolutionary phase transitions driven

by changes in the statistics of environmental fluctuations. We have formulated a theory

that predicts optimal responses under fluctuating conditions, and which could be broadly

applied to study diverse systems from immune responses [41, 42] and viral dynamics [43] to

physiological adaptations [35], drug resistance [44–46], and cooperation [47] in phenotypically

diverse cellular populations.
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FIGURES
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FIG. 1. Coarse-graining environmental fluctuations. The fluctuations shown can be represented

with two distinct environmental states. In each environmental block of a given state and duration,

phenotype frequencies i = 1, . . . ,m change according to (1). Phenotype frequency at the start of

each environment depends on the history of fluctuations.
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FIG. 2. Long-term growth rate as a function of memory (both in units of b). Solid circles, numeric

result obtained by averaging growth over many random realizations of environments. Error bars

are smaller than symbol size. Solid (dashed) line, result of mean-field (leading order correction).

Here b = 1, c = 0.3, τON = 1. Environmental durations are drawn from a discrete distribution

with P (0.5) = 0.7 and P (10) = 0.3. Inset: periodic model of environmental fluctuations. As envi-

ronmental durations increase to satisfy cτenv & bτON , the location of the optimum discontinuously

transitions from infinite memory to zero memory.
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FIG. 3. (A) Evolutionary phase diagram of a gene regulatory network. The three optimization

strategies cover three distinct regions in the phase space of fluctuations. Parameter values are

b = 1, c = 0.3, τON = 1. Variables are expressed in units of b−1, hence both axes are dimensionless.

Solid (dashed) lines separating optimal responses correspond to first order (continuous) phase

transitions; with intersection shown at the triple point (dark circle) and the critical point (white

circle). Location of the critical point is approximate. Curves of constant memory are in solid

gray. The solid white curve terminating at the critical point corresponds to the critical value of

memory. Arrows indicate directions along which phase transitions occur, with letters referring to

panels below showing the change in fitness landscape. (B-E) First order (B, D) and continuous

(C, E) phase transitions. As the statistics of the environment is varied a new maximum develops

at a different value of memory and the network discontinuously or continuously crosses to the new

optimum. Gray arrows indicate the direction along which phase transitions occur.
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