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We theoretically investigate the interplay between the confinement length L and the thermal de
Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An
analytical formula for the power factor is derived based on the one-band model assuming nonde-
generate semiconductors to describe quantum effects on the power factor of the low dimensional
semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when
L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having
L smaller than their Λ will give a better thermoelectric performance compared to their bulk coun-
terpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power
factor compared to the lower dimensional ones.
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Thermoelectricity is a promising technology to im-
prove the renewable energy performance through con-
version of waste heat into electric energy [1, 2]. The
efficiency of a solid-state thermoelectric power generator
is usually evaluated by the dimensionless figure of merit,
ZT = S2σκ−1T , where S is the Seebeck coefficient, σ is
the electrical conductivity, κ is the thermal conductivity,
and T is the absolute temperature. A fundamental aspect
in the research of thermoelectricity is the demand to max-
imize the ZT value by having large S, high σ, and low κ.
However, since S, σ and κ are generally interdependent,
it has always been challenging for researchers to find ma-
terials with ZT > 2 at room temperature [3]. Huge ef-
forts have been dedicated to reduce κ using semiconduct-
ing materials with low-dimensional structures, in which
κ is dominated by phonon heat transport. For example,
recent experiments using Si nanowires have observed that
κ can be reduced below the theoretical limit of bulk Si
(0.99 W/mK) because the phonon mean free path is lim-
ited by boundary scattering in nanostructures [4, 5]. In
these experiments, the reduction of the semiconducting
nanowire diameter is likely to achieve a large enhance-
ment in thermoelectric efficiency with ZT > 1 at room
temperature [4, 5]. The success in reducing κ thus leads
to the next challenge in increasing the thermoelectric
power factor PF = S2σ.

The importance of maximizing the PF can be recog-
nized from the fact that when the heat source is un-
limited, the ZT value is no longer the only one pa-
rameter to evaluate the thermoelectric efficiency. In
this case, the output power density Q is also impor-
tant to be evaluated [6, 7]. The PF term appears in
the definition of Q, particularly for its maximum value,
Qmax = PF (Th − Tc)

2/4h`, where Th, Tc, and h` are
the hot side temperature, cold side temperature, and the
length between the hot and the cold sides (called the leg
length), respectively. Since the term (Th − Tc)2/4h` is
given by the boundary condition, Q is mostly affected by

PF . Here we mention the definition of Q because some
materials show high ZT but low thermoelectric perfor-
mance due to their small Q. For example, Liu et al. has
compared two materials: PbSe (with maximum values of
ZT = 1.3, PF = 21 µW/cmK2) and Hf0.25Zr0.75NiSn
(ZT = 1, PF = 52 µW/cmK2) at Th = 500 ◦C and
Tc = 50 ◦C with a leg length h` = 2 mm [7]. Their calcu-
lation showed that PbSe (Hf0.25Zr0.75NiSn) has thermo-
electric efficiency of about 11% (10%), while its output
Q is about 5.4 W/cm2 (14.4 W/cm2). From this infor-
mation, we can see that although PbSe has a larger ZT ,
its output power is smaller than Hf0.25Zr0.75NiSn. There-
fore, increasing the PF value is important to enhance not
only ZT but also Q for power generation applications.
We thus would like to consider the issue of maximizing
PF as the main topic of the present work.

Of several methods to increase the PF value, the re-
duction of the confinement length L, which is defined by
the effective size of the electron wave functions in the non-
principal direction for low-dimensional materials, such as
the thickness in thin films and the diameter in nanowires,
might be the most straightforward technique, since it was
proven to substantially increase ZT [5, 8–10]. A ground-
breaking theoretical study by Hicks and Dresselhaus in
1993 predicted that a decrease in L can increase PF and
ZT of low-dimensional structures [11, 12]. However, if
we look at some previous works more carefully regarding
the subject of the effect of confinement on the PF , there
were some experiments which showed that the PF of one-
dimensional (1D) Si nanowires is still similar to that of
the 3D bulk system [4, 5], while other experiments on
Bi nanowires show an enhanced PF value compared to
its bulk state [10]. These situations indicate that there
is another parameter that should be compared with L.
We will show in this Letter that the thermal de Broglie
wavelength Λ is a key parameter that defines quantum
effects in thermoelectricity. In order to show these ef-
fects, we investigate the quantum confinement effects on
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the PF for typical low-dimensional semiconductors. By
comparing L with Λ, we discuss the quantum effects and
the classical limit on the PF , from which we can obtain
an appropriate condition to maximize the PF .

In this Letter, we give an analytical formula for the
optimum PF value which can show the interplay be-
tween the quantum confinement length and the ther-
mal de Broglie wavelength of semiconductors with dif-
ferent dimensionalities. We apply the one-band model
with the relaxation time approximation (RTA) to de-
rive the analytical formula for the PF of nondegener-
ate semiconductors. The justification for the one-band
model with the RTA was already given in some earlier
studies, which concluded that the model was accurate
enough to predict the thermoelectric properties of low di-
mensional semiconductors, such as semiconducting car-
bon nanotubes (s-SWNTs) [13], Bi2Te3 thin films [11],
and Bi nanowires [12, 14]. To obtain the PF formula in
this work, we use similar analytical expressions for the
Seebeck coefficient S and the electrical conductivity σ
which were derived in our previous paper [13]. However,
compared with Ref. 13, there is a modification to the def-
inition of the relaxation time τ(E) that we adopt in the
present work, i.e., τ(E) = τ0(E/kBT )r, where τ0 is the
relaxation time coefficient, E is the carrier energy, kB is
the Boltzmann constant, T is the average absolute tem-
perature, and r is a characteristic exponent determining
the scattering mechanism. In Ref. 13, τ(E) was defined
by τ(E) = τ0E

r [15, 16], where we considered only the
case of r = 0 or constant relaxation time approxima-
tion (CRTA) for discussing the Seebeck coefficients of
s-SWNTs. Redefinition of τ(E) = τ0(E/kBT )r is, how-
ever, suitable for purposes of this work.

The Seebeck coefficient S and the electrical conductiv-
ity σ are given, respectively, by [13, 17]

S = −kB
q

(
η − r − D

2
− 1

)
, (1)

and

σ =
4q2τ0

(
r + D

2

)
(kBT )D/2Γ(r + D

2 )

D L3−D(2π)D/2~DΓ(D2 )
(m∗)D/2−1eη,

(2)
where D = 1, 2, or 3 denotes the dimension of the mate-
rial (1D, 2D, or 3D systems), q = ±e is the unit carrier
charge, m∗ is the effective mass of electrons or holes, L
is the confinement length for a particular material di-
mension, Γ(p) =

∫∞
0
xp−1e−xdx is the Gamma function,

η = ζ/kBT is the reduced chemical potential (while ζ is
defined as the chemical potential measured from the top
of the valence energy band in a p-type semiconductor),
kB is the Boltzmann constant, and ~ is Planck’s constant.
Note that for an n-type semiconductor, we can redefine η
or ζ to be measured from the bottom of the conduction
band, while the formulas for S and σ remain the same.
From Eqs. (1) and (2), the thermoelectric power factor

can be written as

PF ≡ S2σ = A(η − C)2eη, (3)

where A (in units of W/mK2) and C (dimensionless) are
given by

A =
4τ0k

2
B

L3m∗

(
L

Λ

)D (r + D
2

)
Γ
(
r + D

2

)
D Γ

(
D
2

) , (4)

and C = r+D/2+1, respectively. In Eq. (4), the thermal
de Broglie wavelength is defined by

Λ = (2π~2/kBTm∗)1/2 (5)

which is a measure of the thermodynamic uncertainty for
the localization of a particle of mass m∗ with the average
thermal momentum ~(2π/Λ) [18].

For a given τ(E), the carrier mobility is defined by

µ =
q〈〈τ(E)〉〉

m∗
, (6)

where

〈〈τ(E)〉〉 ≡ 〈Eτ(E)〉
〈E〉

= τ0
Γ
(
5
2 + r

)
Γ
(
5
2

) , (7)

and 〈x〉 =
∫∞
0
xe−E/kBT dE in Eq. (7) is a canonical av-

erage of x. From Eqs. (4), (6) and (7), the term A of the
power factor can be rewritten as

A =
4µk2B
qL3

(
L

Λ

)D (r + D
2

)
B
(
r, 52
)

D B
(
r, D2

) , (8)

where B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the Beta function.
We can now determine the optimum power factor as a
function of η from Eq. (3) by solving d(PF )/dη = 0.
The optimum power factor, PFopt, is found to be

PFopt =
16µk2B
qL3

(
L

Λ

)D (r + D
2

)
B
(
r, 52
)

D B
(
r, D2

) er+D/2−1, (9)

whereas the corresponding value for the reduced (dimen-
sionless) chemical potential is ηopt = r +D/2− 1.

Next, we discuss some cases where PFopt may be en-
hanced significantly. Figure 1 shows PFopt as a function
of the characteristic exponent r for the 1D, 2D, and 3D
systems, in which the values of r range from −0.5 to 1.5
for various scattering processes [15, 16]. In these exam-
ples, we consider a typical semiconductor, n-type Si, at
room temperature and high-doping concentrations on the
order of 1018 cm−3. The thermal de Broglie wavelength
and the carrier mobility are set to be Λ = 4.5 nm and
µ = 420 cm2/Vs, respectively. We note that the scatter-
ing time assumed under the CRTA corresponds to r = 0,
and thus 〈〈τ(e)〉〉 ≡ τ0 [19]. As shown in Fig. 1, PFopt

increases with increasing r for all the 1D, 2D, and 3D
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FIG. 1. (Color online) Optimum power factor PFopt as a
function of characteristic exponent r for the 1D, 2D, and 3D
systems. The thermal de Broglie wavelength is set to be Λ =
4.5 nm (for n-type Si) and the mobility is µ = 420 cm2/Vs.
The confinement length L is varied for the 1D and 2D systems,
each for L = 2 nm, L = Λ (4.5 nm), and L = 7 nm. The
value of r = 0 corresponds to the constant relaxation time
approximation (CRTA).

systems. The effect of the characteristic exponent r on
the 3D system is stronger than that of the 1D and 2D
systems. Based on Eq. (9) and Fig. 1, PFopt increases
with decreasing L corresponding to the confinement ef-
fect for the 1D and 2D systems. It is noted in Fig. 1
that PFopt in the 3D system does not depend on L as
shown in Eq. (9) with D = 3. However, the qualitative
behaviour between r and PFopt is not much affected by
changing L since r and L are independent of each other
in Eq. (9).

Figure 2 shows PFopt as a function of confinement
length L and thermal de Broglie wavelength Λ for the 1D,
2D, and 3D systems. The mobility is set to be µ = 420
cm2/Vs for each system and the scattering rate may be
proportional to the density of final states (DOS). By as-
suming proportionality of the scattering rate with respect
to the DOS, we obtain r = +0.5, r = 0 and r = −0.5
for 1D, 2D, and 3D systems, respectively [16]. Hereafter,
we consider such different r values for the different di-
mensions. The curves in Figs. 2(a) and (b) in particular
show a L−2 and L−1 dependence of PFopt for 1D and
2D systems, respectively [cf. Eq. (9)]. These results are
consistent with the Hicks-Dresselhaus model [11, 12]. In
addition, in this Letter, we point out that it is important
to consider the dependence of PFopt on Λ. For an ideal
electron gas under a trapping potential, the thermody-
namic uncertainty principle may roughly be expressed as
∆P/P ×∆V/V ≥ (D3/2/

√
2π)Λ/L, where P and V are

the pressure and volume of the system, respectively [20].
The uncertainty principle ensures that when the confine-
ment length is comparable with the thermal de Broglie
wavelength, i.e., L ≤ (D3/2/

√
2π)Λ, the P and V cannot

be treated as commuting observables. In this case, quan-
tum effects play an important role in increasing PFopt
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FIG. 2. (Color online) Optimum power factor PFopt as a
function of confinement length L and thermal de Broglie wave-
length Λ plotted on a logarithmic scale for (a) 1D, (b) 2D, and
(c) 3D systems.

for nanostructures. For a 1D system [Fig. 2(a)] PFopt

starts to increase significantly when L is much smaller
than Λ, while for the 2D system [Fig. 2(b)] PFopt starts
to increase significantly when L is comparable to Λ. As
for the 3D system [Fig. 2(c)], PFopt increases with de-
creasing Λ for any L values. Therefore, a nanostructure
having both small L and Λ (while L is also much smaller
than its Λ) will be the most optimized structure to en-
hance PF .

Now we can compare our model with various exper-
imental data. In Fig. 3, we show PFopt as a function
of L/Λ for different dimensions (1D, 2D, and 3D sys-
tems) following Eq. (9). The PFopt values are scaled by
the optimum power factor of a 3D system, PF 3D

opt. From

Eq. (9), we see that the ratio PFopt/PF
3D
opt merely de-

pends on L/Λ and D. Hence, PF from various materi-
als can be compared directly with the theoretical curves
shown in Fig. 3. The experimental data in Fig. 3 are
obtained from the PF values of 1D Bi nanowires [10],
1D Si nanowires [5], 2D Si quantum wells [21], and
two different experiments on 2D PbTe quantum wells
labeled by PbTe–1 and PbTe–2 [22, 23]. Here we use
fixed parameters for the thermal de Broglie wavelength
of each material: ΛBi = 32 nm, ΛSi = 4.5 nm, and
ΛPbTe = 5 nm. We also set some PF values for
bulk systems: PF 3D

Bi = 0.002 W/mK2 [10], PF 3D
Si =

0.004 W/mK2 [24], PF 3D
PbTe−1 = 0.002 W/mK2 [22], and

PF 3D
PbTe−2 = 0.003 W/mK2 [23], which are necessary to

put all the experimental results into Fig. 3.

We find that the curves in Fig. 3 demonstrate a strong
enhancement of PFopt in 1D and 2D systems when the
ratio L/Λ is smaller than one (L < Λ). In contrast, if L
is larger than Λ, the bulk 3D semiconductors may give a
larger PFopt value than the lower dimensional semicon-
ductors, as shown in Fig. 3 up to a limit of L/Λ ≈ 2.
We argue that such a condition is the main reason why
an enhanced PF is not always observed in some mate-
rials although experimentalists have reduced the mate-
rial dimensionality. For example, in the case of 1D Si
nanowires, where we have ΛSi ∼ 4.5 nm, we can see
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FIG. 3. (Color online) PFopt/PF
3D
opt as a function of L/Λ

for different dimensions. The L/Λ axis is given using a log-
arithmic scale. Theoretical results for 1D, 2D, and 3D sys-
tems are represented by dashed, dotted, and solid lines, re-
spectively. Asterisks, pentagons, diamonds, circles, and tri-
angles denote experimental results for 1D Si nanowires [5],
1D Bi nanowires [10], 2D Si quantum wells [21], 2D PbTe–1
quantum wells [22], and 2D PbTe–2 quantum wells [23], re-
spectively. For the experimental results, we set the thermal
de Broglie wavelength of each material as: ΛBi = 32 nm,
ΛSi = 4.5 nm, and ΛPbTe = 5 nm. We also have the follow-
ing PF values for 3D systems: PF 3D

Bi = 0.002 W/mK2 [10],
PF 3D

Si = 0.004 W/mK2 [24], PF 3D
PbTe−1 = 0.002 W/mK2 [22],

and PF 3D
PbTe−2 = 0.003 W/mK2 [23].

that the experimental PF values in Fig. 3 are almost
the same as the PF 3D

opt. The reason is that the diameters
(supposed to represent L) of the 1D Si nanowires, which
were about 36–52 nm in the previous experiments [4, 5],
are still too large compared with ΛSi. It might be diffi-
cult for experimentalists to obtain a condition of L < Λ
for the 1D Si nanowires. In the case of materials having
larger Λ, e.g., Bi with ΛBi ∼ 32 nm, the PF values of
the 1D Bi nanowires can be enhanced at L < Λ, which is
already possible to achieve experimentally [10]. Further-
more, when L � Λ, it is natural to expect that PFopt

of 1D and 2D semiconductors resemble PF 3D
opt as shown

by some experimental data in Fig. 3. It should be noted
that, within the one-band model, we do not obtain a
smooth transition of PFopt in Fig. 3 from the lower di-
mensional to the 3D characteristics for large L because
we neglect contributions coming from many other sub-
bands responsible for the appearance of the 3D density
of states [25].

So far, we have used the confinement length L as an
independent parameter in Eq. (9). It is actually possible
to engineer the confinement length in the same material.
For extremely thin films or nanowires, L is expressed by
two components as L = L0 + ∆L, where L0 is the thick-
ness of the material and ∆L is the size of the evanes-
cent electron wavefunction beyond the surface boundary.
Within the box of L0 the electron wavefunction is delo-
calized, approximated by the linear combination of plane

waves, while within ∆L the electron wavefunction is ap-
proximated by evanescent waves. For a single-layered
material, e.g., a hexagonal boron nitride (h-BN) sheet,
L0 ≈ 0 so that L ≈ ∆L = 0.333 nm [26]. As for ultra-
thick 1D nanowires or 2D thin films, we have L � ∆L,
and thus the confinement length is mostly determined
by the size of the material such as L ≈ L0. Creating
a 1D channel from a 2D material by applying negative
gate voltages on two sides of the 2D material can be an
example to engineer the confinement length [27].

We already see that the thermal de Broglie wave-
length Λ depends on the temperature and the effective
mass for the material. As given in Eq. (5), Λ decreases

(∝ T−1/2 or m∗−1/2) with increasing temperature T or
with increasing effective mass m∗, which indicates that
the PFopt [∝ (L/Λ)D in Eq. (9)] of nondegenerate semi-
conductors would be enhanced at higher T or at larger
m∗ (smaller Λ). This result is consistent with the exper-
imental observations for the PF values of Si and PbTe,
which are monotonically increasing as a function of tem-
perature [5, 24, 28]. It should be noted that Λ is not
necessarily independent of L and D because the term
m∗ may be altered by varying L or by changing D. For
example, based on the fitting in Ref. 29, the effective
masses of 1D Si nanowires for L within the interval of
2–40 nm could change from 1.1 m0 to 0.8 m0, where m0

is the free electron mass. Meanwhile, Ref. 30 reported
that bulk 3D Si has an effective mass of about 1.09m0

at room temperature. As a result, we estimate that the
change of Λ is roughly about 5–10% in this case. This
fact might contribute to the small discrepancy between
the PF values from our theory and those from experi-
ments since we set Λ as a fixed quantity upon variation
of L in 1D and 2D systems (see Fig. 3). For the 3D sys-
tem, the theoretical values (PF 3D

Bi = 0.0019 W/mK2 and
PF 3D

Si = 0.0044 W/mK2) are in good agreement with
the experimental data (PF 3D

Bi = 0.002 W/mK2 [10] and
PF 3D

Si = 0.004 W/mK2 [24]).
In conclusion, we have shown that the largest power

factor PF values might be obtained for low-dimensional
systems by decreasing both the confinement length L
and the thermal de Broglie wavelength Λ while keeping
L < Λ. Depending on the materials dimension, there
is a different interplay between L and Λ to enhance the
power factor. A simple analytical formula [Eq. (9)] based
on the one-band model has been derived to describe the
quantum effects on the PF in 1D, 2D, and 3D systems.
We would suggest to experimentalists to be careful to
check the trade-off between L and Λ in order to enhance
PF for different dimensions of their semiconductors.
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