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We use acoustic resonances in a planar layer of a half-wavelength thickness to twist wave vectors
of an in-coming plane wave into a spiral phase dislocation of an out-going vortex beam with orbital
angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by
producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production
differs from existing means for OAM production by enormous phased spiral sources or by elaborate
spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for

further applications of acoustic OAM.

PACS numbers: XX

Wave fields with spiral phase dislocations [I] carry
orbital angular momentum (OAM) such as for sound
fields [2], optical waves [3], and electron beams [4].
A spiral phase exp(imd) linearly proportional to the
azimuth angle 6 is associated with a null field at the
core. The carried OAM is discretized with the integer
m (topological charge or order of the beam) to have
an OAM-to-energy ratio m/w (where w is the radian
frequency) for both quantum [3 4] and classical waves
[5L[6]. Transfer of the OAM to matters produces a torque
associated with the transfer of wave energy such as in
optical [THI] and acoustic waves [T0HI4].

Acoustic waves with spiral phases and OAM of
useful properties (e.g., [I5HI9]) were generated by
phased spiral sources or physically spiral sources. A
phased spiral source consists of an array of individually
addressed transducers excited with appropriate screw
phases to produce the expected phase profile in acoustic
vortex beams [2, [20] or vortice of surface waves
21, 22]. A physically spiral source is a passive
structure with screw dislocated profiles to produce
phase profiles in wave fields, e.g., a helical substrate
underneath ferroelectret film for airborne ultrasonic
vortex generation [23], an absorbing surface with helix
dimension for optoacoustic generation of a helical
ultrasonic beam [24], a spiral-shaped object (spiral phase
plate) for chiral scattering [25], and spiral gratings for
diffracting waves into stable vortex beams [26].

The general principle for producing the spiral phase
(denoted by ¢out) can be written as,

Pout (0) = din + k1, (1)
where the dependence of ¢yt on the azimuth angle 6
was produced via a 6-dependent phase ¢, in phased
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FIG. 1. Illustration of a resonant planar layer (blue)
converting an in-coming axisymmetric wave without orbital
angular momentum (OAM) to an out-going beam with helical
wave front carrying OAM (wave fronts are shown in grey).

spiral sources or via a f-dependent propagation distance
I through physically spiral sources.

The OAM production in this study doesn’t have
to reply on the 6 dependence in either phase ¢, or
propagation distance [ in Eq. . Instead we produce a
-dependent effective wave number k. The mechanism
is that, regardless of no #-dependence in phase ¢;, of
an axisymmetric in-coming wave and in propagation
distance [ of a planar layer [Fig. [1]|, acoustic resonances
are excited in the layer to eventually produce the desired
wave number k° for twisting the wave vectors into a
phase dislocation of an vortex beam with OAM. We
numerically model and experimentally demonstrate this
mechanism by generating a Bessel-like vortex beam.

Model. — We construct the planar layer as an
assembly of eight fan-like sections of resonators over
the whole azimuth [Fig. 2(a)]. This amount of sections
gives a reasonably good resolution for generating a
vortex beam with a topological charge m = 1, as will
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FIG. 2. (a) Schematic of the assembled layer consisting of eight fan-like sections of resonators. (b) An individual section
consisting of three rows of resonators in the radial r direction (the radial resolution h = 0.1A with A being the sound wavelength),
sided by pipes of varying height h1 to produce needed effective wave number [cf. Eq. (I)]; the thickness of the walls is 0.01\. (c)
The effective wave number k°% (red; normalized by k = 27/)) and transmission coefficient |T'| (blue) as functions of the height
ratio hi/h simulated for the three rows in (b), where in each case the eight black dots are parameters selected for the eight
sections in (a) with equally discrete wave numbers to generate a first-order vortex beam. The averaged transmission efficiency

of these 8 x 3 elements is |T'| = 95.1% + 3.8%.

be demonstrated via both numerical simulations and
experimental measurements. For generating higher-order
vortex beams, the amount of sections in the resonant
layer can be increased for a finer resolution.

Each individual section [Fig. |(b)] is configured to
compose of three rows of resonators in the radius
(more rows can be employed for a larger radius).
Each row consists of four Helmholtz cavities and a
straight pipe [27]: (I) the series connection of four
cavities acting as lumped elements is for a fully flexible
manipulation of wave numbers k°® (or phases), (II)
the combination of cavities and pipes provides hybrid
resonances that overcome the impedance mismatch
between the resonators and the surrounding air for a high
transmission, and (III) the layer is optimized to have
a propagation distance [ = 0.5\, a value that is small
enough to maintain hybrid resonances, but large enough
for negligible viscous effects (with the width of each
cavity’s neck in air fixed at 0.025)\) and for manipulating
the wave number k°® over a fully desired range (a
reasonably good performance can still be obtained with
[ 2 0.4); c.f. Fig. 3 in [27]).

We use the resonant layer to produce desired spiral
phases and OAM by manipulating the k% for an
azimuthal dependence via tuning the height of the
cavities into an azimuthal dependence. The k°T values
are modulated for the eight sections individually, denoted
by k?ﬂ(j = 1,2,...8). Consider generating a first-order

m 1 vortex beam, the kjﬂ values selected for the
eight sections cover the whole range from —k to k with a
step of k/4 (where k = 27/\ is the wave number in the
surrounding medium). If the three rows of resonators
have an identical transmission, the out-going normalized
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field from an individual segment is approximated by:
pla=o = exp(ik$Tl —iwt) for (j—1)mw/4 < 0 < jm/4. (2)

The out-going wave propagates in a rigid cylindrical
waveguide of radius a as for generating a vortex beam of
a Bessel-like profile. The wave can be represented as a
sum of cylindrical Bessel modes:

p= Z Z A Im (kmnr) exp(ik,z +imb —iwt), (3)

where A,, , is the modal amplitude, Jy,(km n7) is the
m-order Bessel function, k,, , is the n-th positive root of
equation 9Jp, (km.nr)/0(kmnT)|lr= = 0, and the axial
wave number is k, k2 — k2, .. We restrict the
(m,n) = (1,1) mode as the only propagating vortex
mode in the waveguide by choosing k£ to be higher than
the critical wave number of the (1,1) mode (i.e. ki,1)
but lower than that of (1,2) mode (i.e. k1 2). Given the
condition at z = 0 in Eq. 7 the normalized propagating
field would be:

p = Ji(k117) exp(ik.z + i — iwt) (4)
which is exactly a first-order Bessel-like vortex beam
(topological charge m = 1) that carries OAM.
Simulations and Measurements. — Now we simulate
the conversion of the acoustic resonances to OAM with
finite element method based on COMSOL Multiphysics
software (with the Pressure Acoustic Interface [28]).
The simulations resemble the experimental setup of an
in-coming wave at 2287 Hz (with an airborne wavelength
of 15 c¢m), simulated as a plane wave to propagate along
an air-filled cylindrical waveguide of a 5-cm radius and
transmit through a coaxial resonant layer of a 7.5-cm



134 thickness. The airborne sound wave number k = 41.9
s rad/s is in between the values of kj 1 36.8 rad/s
o and k12 = 106.4 rad/s of the waveguide, satisfying
17 the criteria stated in aforementioned model analysis.
s Solid materials (used in experiments) for the waveguide
(PMMA) and for the layer (UV resin) are treated as
acoustically rigid in simulations because of the strong
contrast of acoustic impedance between these materials
and air [29].

Simulations individually for the three rows in Fig. b)
(via two-dimensional axisymmetric simulations) indicate
an almost unity transmission |T'| over a wide range of
height ratio hi/h [Fig. [c), blue curves], guaranteeing
the efficient conversion of acoustic resonances to OAM.
The effective wave number k%, calculated from arg(T)/I,
exhibits the required coverage of full 2k range [Fig. 2{c),
red curves], where the eight dots give the eight discrete
kST values for the eight sections in Fig. a). Their
transmissions have an average of 95.1 % =+ 3.8 %.

The simulated transmission through the whole layer
(via three-dimensional simulations in the air-filled
waveguide) exhibits an expected twisted wave front with
a screw dislocation along the propagation axis [Fig. [3|(a)].
Distribution of phases and sound amplitudes at four
cross sections [Fig. [3(b)] illustrates a transition from
near to far field. The transition point would be around
a?/X\ = 0.11), estimated from radiation of circular piston
[30]. The distortion in both phases and amplitudes is
obvious at the cross section z = 0.01\ [left hand side
panels in Fig. b)], while at the rest of three cross
sections z > 0.11 the phase regularly jumps 27 over one
annular loop, revealing the expected topological charge
m = 1. Another representative characteristic of the
Bessel-like vortex — null pressure amplitude at the core
— is also clearly shown in Fig. [3[b) (bottom), where a
small asymmetry over the azimuth is due to the small
differences of transmission |T'| among the resonators
[Fig. [c)]. The overall transmission efficiency through
the layer is 93.8% when calculated from squared root of
out-going to in-coming sound power ratio.

Experiments to verify and demonstrate the OAM
production are conducted in a 300-cm long waveguide
and using a layer fabricated via 3D printing technology
[Fig. []a) A monochromatic sound, excited
by a loudspeaker (4-inch diameter) facing into the
waveguide at one end, propagates as a plane wave
through the waveguide and illuminate on the layer placed
at the middle of the waveguide. Transmitted sound
is absorbed by sound absorbing foam at the other end
of the waveguide. Three-dimensional sound field scan
is conducted by employing two microphones (1/4-inch,
155 Britel & Keaejr type-4961) with a mobile one scanning
18 the out-going field with OAM and a fixed one detecting
17 the in-coming wave as a reference signal. Phase and
188 amplitude of sound in each scan point are retrieved from
189 cross-spectrum of the two signals.
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10 The measured phase distributions at far-field cross

01 sections 2z 0.27A and 0.5\ [Fig. [[b)] recover
12 the corresponding simulated results in a good shape
w3 [Fig. B(b)]. The phase profile is measured (via cross
e correlation) to rotate an angle of 0.2177 radians between
105 these two cross sections, revealing an axial wave number
6 k, = 19.8 rad/m (given the known propagation distance
w7 of 0.23)\ in between), verifying a value of k,
198 k2 — kgn,n
109 frequency and cylinder geometry.

The corresponding sound amplitude measured at the
1 two far-field cross sections is shown in Fig. [lc) for a
202 direct comparison with simulated results and theoretical
s profiles Jy(k117) [cf. Eq. (B)]. The results show the
e primary characteristics of the m = 1 Bessel-like vortex in
205 the measured amplitude. The transmission (square root
206 of out-going to in-coming sound power ratio) is measured
27 to be 88.4 % [32], verifying the high efficiency and
208 the effectiveness of the proposed scheme in converting
200 acoustic resonances to OAM.

The underlying mechanism on manipulating allows
an for adjusting resonant frequencies and selecting the
212 propagating mode via tailoring structural parameters of

20 rad/m calculated from the known
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FIG. 4. Experiments. (a) The assembled sample (top) and its individual section (bottom), fabricated by 3D printing technology
with UV resin, for generating a first-order Bessel-like vortex beam in experiments. (b)Phase distributions measured at z = 0.27\
(top) and 0.5X (bottom). (c) Measurements of sound pressure amplitudes (red) as functions of radius r at the same z as in (b)
are compared with numerical simulations (blue) and theoretical Bessel profiles (black). The measurements are taken at every
/9 in the azimuthal and every 0.5 cm in the radial. The measurements and simulations are shown in (c) as an average (dots)
and uncertainty (error bars) over the azimuthal. The measured transmission at these two cross sections is 88.4%.

the resonators. A proper frequency range ensures the
conversion to the desired mode, chosen as the (1, 1) mode
in this study, while other modes completely fall in the
evanescent regime and are trapped in the near field.

Discussions. — We have used a resonant planar layer
to produce a new mechanism for generating acoustic
beams with OAM. Performance of the mechanism
was demonstrated by employing the resonant layer to
produce OAM of a first-order airborne vortex beam of
a smooth spiral phase and of a Bessel-like profile. In
comparison with existing ways for OAM production by
phased spiral sources that need sophisticated electronic
control and by physically spiral sources that need screw
profiles and may also have a bulky size, our acoustic
resonance-based OAM production via manipulating
effective wave numbers k% bears the advantages of high
efficiency, compact size and planar profile.

The conversion of OAM from fundamental phenomena
of acoustic resonances opens an avenue for producing
acoustic vortex beams with OAM and could promote
practical applications of the screw wave fields. Given
that the resonant planar layer employed here has a small
radius, the generated vortex beam would have a strong
divergence, but that divergence doesn’t occur here for
propagation in a waveguide. A layer with a larger
radius though, with an increased number of resonators
in both the radial and azimuthal directions, can be
employed to generate a less diverging beam in free space
for applications in long range alignment [2], information

22 transmission [33], etc. The larger layer can even be used
23 t0 generate a focused vortex beam provided that both
24 the k% and transmission |T'| have a desired dependence
on both the azimuth and radius by properly selecting
parameters of the resonators [Fig. [2[c)].

245

246

27 We may in principle extend the present mechanism
of producing OAM via acoustic resonance-based
manipulation of effective wave number k% to underwater
propagation, but that environment requires alternative
materials for a sufficient contrast of impedance with that
of water or alternative media for resonances in water

(e.g., soft media [34]).
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