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We consider epidemic extinction in finite networks with broad variation in local connectivity.
Generalizing the theory of large fluctuations to random networks with a given degree distribution,
we are able to predict the most probable, or optimal, paths to extinction in various configurations,
including truncated power-laws. We find that paths for heterogeneous networks follow a limiting
form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-
degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is
further demonstrated through optimal control strategies that leverage the dependence of finite-size
fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating
both high and low-degree nodes based on theoretical predictions, in contrast to methods that ignore
dynamical fluctuations.
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Extinction of epidemics in finite networks is an impor-
tant topic in population dynamics [1, 2]. Though many
factors may contribute, such as environmental changes
and social behavior, it has been demonstrated, and rig-
orously proven for finite populations, that internal fluc-
tuations in a system’s dynamics can organize in such a
way to induce a large fluctuation along a most probable,
or optimal, path to extinction [3–5]. Such fluctuations
to infection-free states have been studied extensively in
well-mixed systems, including the role of vaccination and
treatment programs in reducing the average time to ex-
tinction [3, 6]. Similarly, the most probable extinction
paths have been found in networks with homogeneous
degree, but the behavior appears to be independent of
network topology, as in the well-mixed limit [7].

Somewhat separately, much work has been done
in characterizing the deterministic dynamics, epidemic
threshold, outbreak size distributions, small fluctuations,
localization, and phases of epidemics in complex net-
works [8–14]. Only very recently has there been progress
in understanding the interplay between stochastic noise
and network dynamics that can lead to large fluctuations
and switching between states [15]. However, very little is
known about how internal noise inherent to epidemic ex-
tinction pertains in heterogeneous networks having vastly
differing topologies.

In this letter we construct and analyze the most prob-
able path through heterogeneous networks to extinction.
Novel in this work, is that we show the path has two pri-
mary forms, close-to and far-from the epidemic threshold.
In the latter, we demonstrate an interesting multi-step
structure in which low-degree node infections decrease
first, followed by a quick, nearly complete extinction in
high-degree nodes, and finishing with a low-degree ex-
tinction. The approach is then used to design a novel tar-
geted optimal treatment strategy that can exponentially
reduce extinction times, but does not trivially treat the
most well connected nodes, minimize the epidemic size,

nor maximize the number of treatments. Instead, the
optimal control minimizes the “action” associated with
a transition to extinction with respect to the network
topology. Such controls that manipulate finite-size fluc-
tuations inherent in contact processes based on topology
are also novel in the study of complex networks [6, 15].

To understand how extinctions depend on topological
heterogeneity, we consider the stochastic SIS model on
uncorrelated random networks with a given degree dis-
tribution, gk, where the degree, k, is the number of links
of a node. Simple graphs with N nodes can be gener-
ated from gk in several ways, for example with a con-
figuration model, CMN [16]. Such networks are usefully
represented by an adjacency matrix, A, where Aij is 1
if nodes i and j are linked, and 0 otherwise. In this
representation a network’s SIS dynamics is captured by
the states and transitions of its nodes, e.g., node i is ei-
ther infected, denoted νi = 1, or susceptible, νi = 0, and
changes its state νi :0→1 with probability per unit time
β(1 − νi)

∑
j Aijνj , and νi : 1 → 0 with probability per

unit time ανi, where β and α are known as the infection
and recovery rates, respectively.

In order to describe the dynamics given these reactions,
it is useful to approximate Aij with its expectation value
in an ensemble of networks, 〈Aij〉, which for uncorrelated
networks takes the form, 〈Aij〉 = kikj/(N 〈k〉), in the
limit of large N . This is known as the “annealed” net-
work approximation and represents a mean-field for het-
erogeneous networks [8–10, 14], though other techniques
give similar results to those shown here [17]. Given this
form, the state of the network can be described by the
number of infected nodes with degree k, Ik, which has
corresponding reactions and rates: Ik → Ik + 1 with rate
of infection winf

k (I) = βk(Nk−Ik)
∑

k′ k
′Ik′/(N 〈k〉), and

Ik → Ik − 1 with recovery rate wrec
k (I) = αIk, where

Ik = 〈Ik1, Ik2, ..., Ikmax〉, and Nk = gkN .

Since the SIS model is stochastic, associated with all
network states is a probability distribution, ρ(I, t), which



2

for networks having a general degree distribution satisfies
an approximate master equation:

∂ρ

∂t
(I, t) =

∑
k

winf
k (I− 1k)ρ(I− 1k, t)− winf

k (I)ρ(I, t)

+ wrec
k (I + 1k)ρ(I + 1k, t)− wrec

k (I)ρ(I, t), (1)

where 1k = 〈0 k1, 0 k2, .., 1 k, .., 0 kmax
〉. We are inter-

ested in the behavior of Eq.(1) for large, but finite net-
works. As customary, we assume N is large and take the
leading order in a 1/N expansion [3, 18]. This is simi-
lar to the Wentzel-Kramers-Brillouin, WKB, ansatz of
quantum mechanics, where 1/N plays the role of Planck’s
constant in Shrödinger’s equation. In accordance with
WKB, by writing ρ(I, t) = e−NS(x,t), where x = I/N ,
and taking the leading order in 1/N , or wk(I ± 1k) ≈
wk(I) and ρ(I ± 1k, t) ≈ e−NS(x)e∓∂S/∂xk , we find a
Hamilton-Jacobi equation, ∂S

∂t + H(x, ∂S∂x ) = 0, where
S and H are called the action and Hamiltonian, respec-
tively. As in classical mechanics, the Hamiltonian is a
function of the coordinate, x, and its conjugate momen-
tum, p = ∂S/∂x:

H(x,p)=
∑
k

[
βk
(
gk−xk

)(
epk−1

)∑
k′

k′xk′

〈k〉
+ αxk

(
e−pk−1

)]
.

(2)

In this context, momenta behave as fluctuations on x –
describing both size and direction.

It is convenient to analyze Eq.(2) by solving the canon-
ical equations of motion: ẋk = ∂H/∂pk, ṗk = −∂H/∂xk,
in terms of the fraction of each degree class infected,
yk = xk/gk, the ratio β/α = β̃, and the re-scaled time,
τ=αt:

ẏk = β̃k(1− yk)epk

∑
k′

k′gk′

〈k〉
yk′ − yke−pk , (3)

ṗk = β̃k
∑
k′

k′gk′

〈k〉

[
yk′
(
epk−1

)
−
(
1−yk′

)(
epk′−1

)]
−e−pk+1.

Of interest are particular solutions of Eq.(3) which cor-
respond to network trajectories that remain near an en-
demic state for some time, and then decay into an ex-
tinct state, with no more infectious nodes. When the
two states are well separated, the distribution ρ(I, t) is
quasi-stationary, or in the WKB ansatz, ∂S

∂t = H = 0:

S =

∫ [
p · ẋ−H

]
dt =

∑
k

gk

∫
pkdyk. (4)

This suggests that we look for solutions of Eq.(3) in
the form of heteroclinic paths connecting two saddle-
point equilibria: from an endemic fixed-point, y∗k=1/(1+

1/(Y β̃k)), pk = 0, to extinction with non-zero momen-
tum, yk = 0, p∗k = −ln(1 + β̃k(1−P )) [3, 5, 19]. The

functions Y and P depend on β̃, with (Y, P ) → (0, 1)
as β̃

〈
k2
〉/
〈k〉 ≡ R0→ 1, and (Y, P )→ (1, 0) as β̃→∞.

Importantly, because such paths extremize their action,
they extremize their probability, and therefore corre-
spond to most probable paths through a network to ex-
tinction [18, 20]. Fig.(1) shows comparisons between
projections of pre-history trajectories to extinction from
stochastic simulations and optimal paths of Eq.(3) for
several network configurations computed with the itera-
tive action minimizing method (IAMM) [21].
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FIG. 1: Density (unnormalized) of 1000 simulations pro-
jected into the fraction of infected high (H) and low-degree
(L) nodes. Predicted paths are shown in blue from the en-
demic state(∗) to extinction(◦). (a) a network with Aij =

kikj/(N 〈k〉), N = 300, and β̃ = 0.096, and with two degree
classes, ki ∈ {5, 50}; k = 50-nodes occupying 10% of the net-
work. (b) a corresponding CMN . (c) a CMN with N = 350,

β̃ = 0.092, and gk =e−1616k/k! where high-degree nodes have
16 ≤ k ≤ 18, and low-degree have 13 ≤ k ≤ 15. (d) a CMN

with N = 600, β̃= 0.038, and gk = k−2.5/
∑300

k′=10 k
′−2.5 where

high-degree nodes have 70 ≤ k ≤ 235, and low-degree have
10≤k≤12.

In general, the average time to reach extinction, 〈T 〉,
will depend on β̃ and network properties in complicated
ways [22, 23]. However, for sufficiently large N , the tran-
sition is an exponential process with a rate proportional
to the probability, and therefore 〈T 〉 ∼ eNS . The net-
work action, Eq.(4), is thus central to understanding the
dependencies of extinction times on network topology.

Qualitatively, we find two important parameter regions
to consider. First, close to the epidemic threshold when
R0 − 1 & 0 (which we call “weak”), the paths to ex-
tinction are approximately linear from (y∗k, 0) to (0, p∗k).
The explicit form can be seen by expanding the equi-
libria in powers of R0− 1, which gives to first order,
y∗k ≈ k

〈
k2
〉
(R0 − 1)/

〈
k3
〉

= −p∗k, implying that the en-
demic state and momentum at extinction are simply pro-
portional to degree when the infection is weak. This is
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intuitive since in the weak limit high-degree nodes drive
the epidemic, when only their local reproductive numbers
are sufficient to spread infection, (β̃k > 1), and there-
fore must recover disproportionately without reinfection
in order for extinction to occur. Paths near the weak
limit can be seen in Fig.1(b) and (d) where R0 =1.6 and
R0 =2.0 respectively, and in Fig.2(a)-(red).

Also for weak infection, the action along the path from
Eq.(4) is therefore:

Sweak =

〈
k2
〉3

2 〈k3〉2
(
R0 − 1

)2
+O

(
R0 − 1

)3
, (5)

which depends on the distance from the epidemic thresh-
old and a non-trivial topological factor that generally de-
creases with increased broadness in the degree distribu-
tion. In contrast, in the well-mixed limit (corresponding
to the simple complete graph) the action only depends on
R0 [3, 22]; The predicted reduction in extinction times
with topological fluctuations is intuitive, since for very
heterogeneous networks only a small fraction of highly
connected nodes must recover without reinfection, com-
pared with most nodes in networks where nodes are topo-
logically similar.

On the other hand if most nodes can propagate infec-
tion, β̃〈k〉� 1 (which we call “strong”), then the inter-
play between degree classes and the path to extinction
are more complicated as the global dynamical structure
of the path becomes apparent. However, we find that
a limiting form emerges when comparing the dynamics
of low and high-degree nodes by which the path can be
described in multiple steps.

Since in the strong limit most nodes will be infected
in the endemic state, it is very improbable that high-
degree nodes can recover without being reinfected, and
thus we expect infection must first disproportionately de-
crease in low-degree nodes. We can extract the form of
this step, by analyzing the unstable eigen-mode of the

endemic equilibrium: (yk, pk) = (y∗k +ε
(1)
k , µ

(1)
k ), to linear

order and studying the asymptotic scaling of (ε
(1)
k , µ

(1)
k )

for large β̃k. Inserting these assumptions into Eq.(3), we

find that (ε
(1)
k , µ

(1)
k ) must satisfy an eigenvalue equation

for the rate λ(1):[
λ(1)+1+

k
(
β̃〈k〉−1

)
〈k〉

]
ε
(1)
k −

[
2− 1

β̃k
− 1

β̃〈k〉

]
µ
(1)
k ≈

∑
k′

k′gk′

〈k〉
ε
(1)
k′.

Since λ(1) and the sum are k-independent, it must be

that for large β̃k, we have ε
(1)
k /ε

(1)
k′ ∼ k′/k (the relative

decrease in infection shown in Fig.2(b)-(1)), with relative
momenta initially tending to a constant.

In the second step (Fig.2(b)-(2)), the small build-up
of momenta for high-degree nodes becomes rapid as the
k-dependent contribution to ṗk approaches a maximum
along the path. In analogy with mechanics, this can be

thought of as the network’s contribution to the “force” on
yk, which near its maximum quickly “pushes” −pk from
near zero to its maximum, −p∗k. On the other hand,
since yk and pk decreases along the path, by inspect-
ing ẏk, we can find an upper bound for −ẏk, max[−ẏk] <
max[−yke−pk ] < −y∗ke−p

∗
k , because the k-dependent con-

tribution to ẏk is positive. Since yk ≈ y∗k until −pk differs
from zero, as the force approaches its maximum, −ẏk can
be approximated by the upper bound, giving the scaling

for large β̃k: ε
(2)
k /ε

(2)
k′ ∼ k/k′.

In the last step (Fig.2(b)-(3)), we expect to have a final
decrease in low-degree node infections in a background of
very small numbers of infected high-degree nodes, since
the latter were rapidly depleted in the second step. The
scaling can be found by analyzing the extinct state’s sta-

ble eigen-mode: (yk, pk) = (ε
(3)
k , p∗k + µ

(3)
k ), which gives

an eigenvalue equation for the rate λ(3),[
1+

1

β̃k
− 1

β̃〈k〉

][
λ(3) +1+

k
(
β̃〈k〉−1

)
〈k〉

]
ε
(3)
k ≈

∑
k′

k′gk′

〈k〉
ε
(3)
k′ ,

that in the limit of large β̃k implies ε
(3)
k /ε

(3)
k′ ∼ k′/k. Ex-

amples are shown in Fig.2(a)(black) and Fig.2(b)(black);
in the former, the strong limit scaling starts to be visible
for R0 & 3. Also, Fig.2(a) shows the significant quali-
tative difference between the epidemic path toward the
endemic state (green), which has been well studied, and
the optimal path to extinction [8].
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FIG. 2: (a) Projections of the optimal paths for truncated
power-law (see Fig.1(d)) shown for increasing R0 ∈ [1.1, 5.1]
(red→black, weak→strong) in steps of 0.5, compared with
the path into the endemic state for R0=5.1 (green). Arrows
indicate direction in time. (b) Projections into yk for the same
distribution with R0 =9 and 17 bins[26], shown for bins with
increasing k: {k=12, 14≤k≤15, 18≤k≤20, 24≤k≤27, 34≤
k≤41, 53≤k≤69, 97≤k≤143, 236≤k≤300} (blue→black),
and compared with the predicted scaling for the highest bin
(dashed lines).

In addition to a theoretical interest in the geometry of
the optimal path through a network, it is also practically
interesting, because extinction times scale exponentially
with the action [3]. Since the action depends nontriv-
ially on network topology, eg. Eq.(5), we suggest ex-
ploiting topology as a basis for optimal epidemic control
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strategies in finite networks, with the goal of minimizing
extinction times [6, 15, 24]. We illustrate the approach
with a random treatment procedure for infected nodes
with degree k, such that they recover with an increased
rate, α+ γwk, where γ is the overall treatment rate, and
wk is a targeting fraction of the infected population with
degree k:

∑
k wk = 1.

endemic infection 
extinction time

γ=2.0
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FIG. 3: Action versus the fraction of infected high-degree
nodes treated in a bimodal network (see Fig.1(a)-(b)) and

increasing treatment rate, γ (red→black): β̃ = 0.275. The
inset shows the extinction times for a CMN with N=200.

In the weak limit we expect optimal treatment to favor
large k (similar to targeted immunization), since y∗k and
p∗k are proportional to k [25]. However in the strong
limit, treating low-degree nodes close to 〈k〉 will tend
to decrease S, since their numbers must be lowered in
the first step, before momenta differ significantly from
zero. In intermediate cases, we expect a mixed strategy
to minimize S. Treatment results are shown in Fig.3
for a simple bimodal network with two degree classes for
clarity, as a function of the targeting fraction for high-
degree nodes, w50.

Interestingly, we find that choosing the optimal wk for
the bimodal network can result in a nearly 50% decrease
in the network action, implying an enormous reduction

in extinction times, i.e., 〈T 〉→〈T 〉1/2 (Fig.3-inset). Fur-
thermore, we note that in Fig.3 the size of the endemic
state is minimized when w50 =0 (cirlces), the equilibrium
treatment rate, γ

∑
k wkgky

∗
k, is maximized when w50 =0

(circles), and R0 is minimized when w50 = 1 (triangles),
but none correspond to the minimum extinction time
control (squares) [27]. The example demonstrates that
designing optimal controls intended to drive epidemics
to extinction in finite networks cannot be found from the
intuitive results of the deterministic limit alone, pk = 0,
but by targeting the network’s components in such a way
as to minimize the network’s action.

In conclusion, we have considered how fluctuations in
the SIS model produce extinctions from internal noise in
finite heterogeneous networks, and found that the pro-

cess is captured by a most probable path. We were
able to construct paths by combining the theory of rare
events and random networks with a general degree distri-
bution, and predict important consequences, such as the
exponential decrease in extinction times with topological
variation, as well as the multi-step scaling of extinction
through nodes with very different degree. Furthermore,
we demonstrated how the theory can be used to manipu-
late fluctuations for optimal network control, producing
exponential decreases in extinction times with a simple
treatment strategy that minimized the action by lever-
aging its dependence on topology. Our theoretically pre-
dicted results were confirmed by simulations over large
parameter ranges and different network topologies.

Lastly, we suggest the theoretical approach can be tai-
lored to more arbitrary weighted networks and general
epidemic processes that would allow one to predict the
paths to extinction through real networks [1, 8, 13, 17].
The specific formalism presented here could be aug-
mented, in addition, to include degree correlations that
may amplify or reverse the patterns described in inter-
esting ways depending on the network assortativity.

We are grateful to Luis Mier-y-Teran Romero, D.
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Shaw for useful discussions. J. H. is a National Re-
search Council postdoctoral fellow. I.B.S was sup-
ported by the U.S. Naval Research Laboratory fund-
ing (N0001414WX00023) and Office of Naval Research
(N0001414WX20610).
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