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We measure time-correlators of a spin qubit in an optically active quantum dot beyond the second
order. Such higher order correlators are shown to be directly sensitive to pure quantum effects that
cannot be explained within the classical framework. They allow direct determination of ensemble
and quantum dephasing times, T ∗2 and T2, using only repeated projective measurements and without
the need for coherent spin control. Our method enables studies of purely quantum behavior in solid
state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden
variable interpretation of the quantum dot spin dynamics.
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Electronic spins in optically active quantum dots
(QDs) have exhibited very long spin lifetimes T1, extend-
ing beyond a millisecond [1, 2], and intrinsic dephasing
times T2 beyond one microsecond when subject to ex-
ternally applied magnetic fields [3–5]. These properties,
combined with the potential for ultrafast optical prepara-
tion and control [6–8], make QD spin qubits very attrac-
tive for quantum information processing [9]. However,
long spin relaxation times do not necessarily predicate
the ability of QD spins to process quantum information.
Therefore, the ability of the spin to show quantum behav-
ior during microsecond intervals is not a priori obvious.

According to the formalism of quantum mechanics, an
unobserved system persists in arbitrary superpositions of
classical states until the system is probed [10]. Therefore,
the state of the system before performing a measurement
is not classically defined, questioning the existence of a
hidden variable theory rendering the outcome of the mea-
surement deterministic. Bell showed [11] that it is pos-
sible to perform experiments to probe the realism of a
quantum system free from the existence of such hidden
variables. Leggett and Garg developed similar tests for
correlators of variables at different points in time [12, 13].
A related effect is the dependence of the future system’s
evolution on the very fact that prior measurements have
been performed irrespectively of the outcome of the mea-
surement [14]. The observation of such quantum mea-
surement effects, which would be impossible without a
state vector collapse at the measurement process, can be
used as a direct test of non-classical behavior. Such viola-
tion of the Leggett-Garg inequality was demonstrated in
various physical systems such as superconducting qubits
[15], photons [16], defect centers in diamond [17], nuclear
magnetic resonance [18] and phosphorous impurities in
silicon [19]. However, in experiments with QDs, this has
hitherto been a complex task since it corresponds to mea-
surements of unusual higher order correlators, which are
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FIG. 1. (a) Band structure of voltage tunable spin memory
device. The optical pump pulse prepares the electron in a spin
down state, applications of optical probe pulses determine the
electronic spin state at time moments t1, t1 + t2. (b) Contour
plot of g3(t1, t2) using Eq. (6). Insets show details of g3 at
timescales t1,2 < T ∗2 and T ∗2 < t1,2 < T2.

very difficult to extract from the background noise.

In this letter, we demonstrate entirely new methods to
probe quantum measurement phenomena in semiconduc-
tor QD spin qubits. We introduce a measurement tech-
nique that can in principle determine an arbitrary order
correlator 〈Q̂tn+...+t1 . . . Q̂t1Q̂0〉, where the sub-indices
indicate the time moments of application of the projec-
tion operator acting on the electronic spin, defined as
Q̂ ≡ |↓〉 〈↓|. Here, 〈. . .〉 indicates an averaging over many
identical measurement sequences. In addition to direct
evidence for the quantum nature of solid state qubits,
we show that our method has practical importance since
it provides a completely alternative route for measuring
the coherence times of qubits which are typically mea-
sured through spin-echo techniques [20, 21] or methods
in the frequency domain, such as coherent population
trapping [22]. Such application of higher order corre-
lators has been theoretically anticipated previously [23]
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and can be applied to many other quantum systems in
the solid state.

The basic idea of our experimental method is schemat-
ically illustrated in Fig. 1(a). An electron spin is first op-
tically prepared in the |↓〉-state in an individual InGaAs
QD by using a picosecond laser pulse [3, 20], indicated by
the label “Pump” in the figure, with a laser power corre-
sponding to a Rabi-π-rotation that generates the neutral
exciton state (|cgs〉 → |↓⇑〉). Immediately after exci-
ton generation, the hole escapes the QD within 4 ps [20]
leaving behind the single electron spin (|↓⇑〉 → |↓〉). The
implementation of an asymmetric tunnel barrier leads
to electron lifetimes extending up to seconds whereas
hole lifetimes are unaffected [1]. In our notation, such
a spin selective electron preparation is equivalent to the
nonzero outcome of the application of the projection op-
erator Q̂0 at t = 0. Following the electron spin initi-
ation, we apply one or more circularly polarized laser
pulses, labeled “Probe 1” and “Probe 2” in Fig. 1(a),
that probe the state of the spin at later moments (t = t1
and t = t1 + t2), by taking advantage of optical spin se-
lection rules in this system [7, 24]. Thus, if the electronic
spin is in the state |↑〉 at time t, such a probe pulse
with a laser power corresponding to a Rabi-π-rotation
excites an additional electron-hole pair (|↑〉 → |↑↓⇑〉),
and the QD becomes charged with two electrons after
hole tunneling (|↑↓⇑〉 → |2e〉) and is, therefore, optically
inactive during the remaining time. Such a state cor-
responds, in our notation, to the zero outcome of the
measurements described by the projection operator Q̂t.
On the other hand, if the electron spin is in the state |↓〉
before the application of the probe pulse, the Pauli ex-
clusion principle does not allow the excitation of a second
electron-hole pair such that the QD becomes effectively
transparent leaving behind a QD charged with one elec-
tron |1e〉.Finally, we perform the measurement of the to-
tal charge (1e or 2e) in the QD (not shown in Fig. 1(a)).
Here, an observation of a doubly charged QD corresponds
to at least one zero outcome of the measurements by op-
erators Q̂t (corresponding to at least one spin-flip event
at t1 or t1 + t2). Conversely, finding a singly charged QD
at the end of the measurement sequence corresponds to
the result Q = 1 in all measurement pulses (no spin-flip
events at time instants t1 and t1 + t2). All the relevant
technical details pertaining to our sample and measure-
ment method are presented in Ref. [25].

A simple model that illustrates quantum measurement
effects is a spin in a fluctuating magnetic field applied
along the x-axis, transverse to the measurement z-axis
(Voigt configuration). This spin is described by the
Hamiltonian:

Ĥ = ω(t)ŝx, (1)

where ω(t) has a strong constant component due to the
external field with Larmor frequency ωL, and a fluctu-
ating component due to the dynamics of the Overhauser

field with frequency ωO(t): ω(t) = ωL + ωO(t). The
latter originates from hyperfine coupling to the bath of
nuclear spins in the QD. It has nearly Gaussian statistics:
〈ωO(t)ωO(t′)〉 = R(t− t′), with correlation function R(t).
This model disregards feedback of the central spin dy-
namics on the nuclear spin bath, which was proven to be
a good approximation due to strong nuclear quadrupole
coupling [5, 20, 26]. We also disregard transverse Over-
hauser field components since their effect is suppressed
due to fast spin precession in the yz-plane.

The Overhauser field has both fast and slow dynamics.
Its fast fluctuations lead to irreversible loss of coherence
with the effective spin lifetime T2, while effects of the
slow quasi-static part of ωO(t) on spin correlators are
analogous to the result of averaging over an ensemble of
systems with different static fields and a characteristic
ensemble dephasing time T ∗2 .

Let Ĝ(t) be the evolution matrix for the measure-
ment probabilities with an element Gαβ(t), α, β ∈ {↑, ↓},
meaning the probability that after the system starts in
the eigenstate with eigenvalue β of the spin projection
operator on the z-axis, the measurement of the spin pro-
jection at a time t afterwards would find the spin in the
state α, e.g.,

G↓↓(t) =
1

2

(
1 + cos

(∫ t

0

ω(t′) dt′
))

. (2)

The second and third order correlators of observable Q̂ =
|↓〉 〈↓| are then given by:

g2(t) = Tr
[
Q̂Ĝ(t)Q̂

]
, (3)

g3(t1, t2) = Tr
[
Q̂Ĝ(t2)Q̂Ĝ(t1)Q̂

]
. (4)

Between measurements of the spin state, the presence
of an external magnetic field leads to oscillations of the
probability of observing Q = 1. Importantly, even if this
value is observed, quantum measurement is generally de-
structive, i.e. it resets the density matrix to |↓〉 〈↓|. Mea-
surements become nondestructive only when the time in-
tervals t1 and t2 are chosen to be commensurate with
the period of the spin precession. This situation corre-
sponds to the quantum measurement effect of resonant
enhancement of the correlator g3(t1, t2) [23]. We are go-
ing to show that it becomes especially pronounced in g3
for times t2 = t1 � T ∗2 .

Substituting Eq. (2) into Eqs. (3)-(4) and averaging
the result over the Overhauser field distribution we find

g2(t) =
1

2

(
1 + cos(ωLt)e

− 1
2

∫ t
0
dt1

∫ t
0
dt2 R(t1−t2)

)
, (5)

g3(t1, t2) =
1

2

[
g2(t1) + g2(t2) +

1

2
g2(t1 + t2)

]
− 3

8
+
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+
1

8
cos(ωL(t1 − t2))e

−
t1+t2∫

0

dt′
t1+t2∫

0

dt′′
q(t′)q(t′′)

2 R(t′−t′′)
.(6)

Here, q(t) = 1 for t < t1 and q(t) = −1 for t > t1. Fig-
ure 1(b) shows an example of g3(t1, t2) calculated using
Eq. (6), considering the case of a correlator R(t − t′) =
(1/T ∗2 )2 + (2/T2)δ(t − t′) [23, 25]. The corresponding
correlators g2(t) in Eq. (5), and hence the term [. . .] in
Eq. (6), decay quickly during T ∗2 [25]. The insets in
Fig. 1(b) show details of g3 at small (t1,2 < T ∗2 ) and
large (t1,2 > T ∗2 ) timescales. Remarkably, the last term
in Eq. (6) along the diagonal direction for t1 = t2 sur-
vives for timescales much longer than T ∗2 . Without a
collapse of the wave function by the measurement, g3
would also decay quickly for T ∗2 < t1,2 � T2 to a con-
stant value 1/4 [25]. However, the 3rd order correlator
is influenced by quantum measurement effects [25] that
make the last term in Eq. (6) immune to inhomogeneous
broadening for equal time intervals between successive
measurements. Along the line t1 = t2 ≡ t, the correlator
g3 first decays quickly within the time T ∗2 , then it de-
cays slowly at timescales of T2 according to ∼ e−2t/T2

towards the value of 1/4 [25]. In fact, one can recognize
the exponent in the last term in Eq. (6), at t1 = t2, as
the expression that describes the spin echo amplitude in
our model [27].

Experiment. Typical measurements of g2 and g3 are
presented in Fig. 2(a) and (b), respectively, for timescales
where t1,2 are in the nanosecond range. Figure 2(a) shows
that the amplitude of g2(t) oscillates with the Larmor
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FIG. 2. (a) Experimental data of g2(t) at in-plane magnetic
fields of Bx = 0.5 T with zoom-in over the initial time. In-
homogeneous dephasing takes place after 2 ns owing to con-
tributions of randomly orientated Overhauser fields. (b) Ex-
perimental data of g3(t1, t2). The upper part shows a line cut
of the contour plot along the anti-diagonal direction, keeping
the total time fixed to t1 + t2 = 750 ps. Comparison with
theoretical predictions using Eq. (6) (red line and upper part
of contour plot).
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0 5 0 1 0 0FIG. 3. Experimental data for g3 along the direction t1 +
t2 = 157.2 ns (anti-diagonal) at Bx = 4 T. The shaded area
indicates the envelope of g3 oscillations with probe fidelities
equal to unity. The data points are obtained by analyzing the
oscillation amplitude, as shown in the inset, using a sinusoidal
fit (red line) at different time sections of t1-traces.

frequency (|ge| = 0.55), since an in-plane magnetic field
of Bx = 0.5 T is applied. Within the initial 2.0 ns the
amplitude of g2 quickly decays with a Gaussian envelope
as ∼ e−

1
2 (t/T

∗
2 )2 owing to contributions of randomly ori-

ented Overhauser fields [20, 28–30]. The red line shows
the application of Eq. (5) agreeing very well with the ex-
perimental results. This demonstrates the high fidelity
of our spin initialization and readout methods, a neces-
sary pre-requisite for conducting higher order correlation
measurements. In contrast to the sinusoidal behavior of
g2, the correlator g3 obtained using a three pulse experi-
ment shows a pattern that is comparable to g2(t1)g2(t2)
at such short timescales. A typical result is presented
in Fig. 2(b) that agrees very well with the theoretical
predictions of Eq. (6) (red line and contour plot).

At longer timescales T ∗2 < t1,2 < T2, i.e. at hundreds
of nanoseconds, the decay of the oscillation amplitude of
g3 along the anti-diagonal direction reflects the dephasing
time T ∗2 , according to Eq. 6. In order to demonstrate this
experimentally, we keep the total time t1 + t2 = 157.2 ns
fixed and tune only the time delay t1. The result of
analyzing the oscillation amplitude of g3 along such an
anti-diagonal line is shown in Fig. 3 at Bx = 4 T. The
inset in Fig. 3 resolves details of g3 from which the os-
cillation amplitude is obtained. Notably, the oscillation
amplitudes at time instants t1 ' t2 have non-vanishing
components for t1,2 � T ∗2 and, hence, are different from
classical values according to g2(t1)g2(t2) = 1/4, which
reflects the quantum nature of the correlator g3 [25].
From the width of the Gaussian-like envelope we extract
T ∗2 = 2.12 ± 0.10 ns, in agreement with values obtained
by measuring the g2 spin correlator, shown in Fig. 2(a).

The amplitude of g3 along the diagonal direction (t1 =
t2 = t) as a function of the total time 2t is presented in
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FIG. 4. (a) Experimental data of g3(t, t) along t1 = t2 di-
rection for different magnetic fields Bx. (b) Numerically ob-
tained g3(t, t) at different magnetic fields. The numerical time
is in units of inverse average hyperfine coupling 1/γH of a
single nuclear spin [25], and magnetics field are in units of
ωL/γH . The number of simulated nuclear spins is N = 900.

Fig. 4(a) for different magnetic fields. At high magnetic
fields (Bx = 4 T) the correlator g3(t, t) decays mono-
exponentially with T2 = 1.4 ± 0.1 µs (gray line), i.e.,
much slower than T ∗2 . It can be seen that upon reduc-
ing the magnetic field to Bx = 1.75 T, g3(t, t) exhibits
slowly oscillatory behavior in addition to an overall decay,
whereas at Bx = 0.5 T a relatively fast decay takes place
towards the limit of 1/4 after ∼ 40 ns. The slowly oscilla-
tory behavior is contrary to predictions of the model with
only two lifetimes, but comparable to features observed
in spin echo measurements [5, 20, 31].

To account for this behavior, a more rigorous model of
decoherence by a nuclear spin bath must include effects
of hyperfine and quadrupole interactions on central spin
dynamics, including both quadrupole and hyperfine cou-
plings and the feedback from central spin dynamics on
nuclear spins. For this, we simulated coupling to nuclear
spins numerically within the dynamical mean field algo-
rithm [32], as described in detail in Refs. [20, 25]. The
results of numerical calculations, presented in Fig. 4(b),
show qualitatively similar behavior to the experimentally
observed data for g3(t, t). This confirms that the oscil-
lations of g3(t, t) at magnetic fields below 4 T can be
explained by the presence of quadrupole interactions in
the nuclear spin bath, in agreement with Refs. [5, 20, 31].

Leggett-Garg type inequality. Pure quantum behav-
ior of the correlator g3(t1, t2) can be also revealed if we
note that, in classical physics, an application of any ex-
tra probe pulse would only reduce the probability for a
QD to remain in the 1e-charge state at the end of the
measurement sequence. Indeed, imagine that the spin
is always physically present in one of the states |↑〉 or
|↓〉, and there is a hidden variable theory that leads to
the existence of a joint probability pα,β(t2 + t1, t1) of ob-
serving the values α, β ∈ {0, 1} at time moments t1 + t2
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FIG. 5. (a) Contour plot of g3(t1, t2) − g2(t1 + t2) at Bx =
0.5 T. The area within the red contour correspond to data
points which violate Eq. (7) and is in very good agreement
with theoretical modeling. (b) Experimental data (dots) and
theoretical calculation (solid line) corresponding to line-cuts
in (a) for t1 + t2 = 690 ps and 750 ps, respectively.

and t1. Then 〈Q̂t2+t1Q̂t1〉 ≤ 〈Q̂t1+t2〉 and we arrive at a
constraint on the correlators of Q ∈ {0, 1}:

g3(t2, t1) ≤ g2(t1 + t2). (7)

This relation is of the same origin as the Leggett-Garg
inequalities, which are usually formulated for dichoto-
mous variables taking values in {−1, 1} [12]. The result
of using Eq. (7) on our measurement data is presented
in Fig. 5(a) for Bx = 0.5 T, where positive values corre-
spond to a violation of the inequality (7) (region within
the red line in the contour plot). In Fig. 5(b), two cross
sections through the experimental data from (a) are pre-
sented for t1 + t2 = 690 ps and 750 ps (data points),
together with the corresponding theoretical calculations
that assume coherent spin precession (solid lines). The
values corresponding to g3(t1, t2) − g2(t1 + t2) > 0 are
classically forbidden and demonstrate that the dynamics
of a single electron spin cannot be described by a classical
theory with hidden variables.

In conclusion, we demonstrated that fully optical
preparation and readout schemes of the electron spin
states in an optically active QD make it possible to mea-
sure spin qubit time-correlators beyond the second order
(g2). Our results revealed effects that were entirely in-
compatible with a classical nondestructive measurement
framework. They can be used as an alternative to spin
echo or dynamic decoupling approaches to determine the
ensemble and intrinsic dephasing times, T ∗2 and T2, with-
out using coherent spin control sequences. We also ob-
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served deviations of such correlators from predictions of
phenomenological models based on several characteristic
lifetimes, which revealed even more subtle details of qubit
interaction with the environment.
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