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We report transport studies on coupled massive and massless electron systems, realized using twisted 
monolayer graphene/natural bilayer graphene stacks. We incorporate the layers in a dual-gated transistor 
geometry enabling independently tuning their charge density and the perpendicular electric field. In a 
perpendicular magnetic field, we observe a distinct pattern of gate-tunable Landau level crossings. 
Screening and interlayer electron-electron interactions yield a nonlinear monolayer gate capacitance. 
Data analysis enables determination of the monolayer’s Fermi velocity and the bilayer’s effective mass. 
The mass obtained is larger than that expected for isolated bilayers, suggesting that the interlayer 
interactions renormalize the band structure.  
  
Placing two-dimensional (2D) material layers in close proximity with a twist angle yields material 
systems with new properties [1-13]. For example, at small twist angles the moiré superlattice enables the 
investigation of Hofstadter butterfly physics [14-18] or momentum-conserved tunneling [1, 7]. 
Moreover, charge screening of closely spaced layers, which depends crucially on the strong interlayer 
electron-electron interactions and their electronic quasiparticle spectra, influences the system properties 
[19-22]. In particular, an interesting situation arises in a twisted graphene trilayer (TTL) [11-13], where 
a graphene monolayer (massless spectrum) [23] is stacked onto and interacts with a graphene bilayer 
(massive spectrum) [23].  Band structure and optical property changes have been predicted with twist 
angle [11, 12]. However, interacting-electron phenomena such as screening and interlayer interactions 
that are important to the behavior of realistic systems remain unaddressed.  
 Here we study TTLs via transport measurements under perpendicular magnetic and electric 
fields. Unlike prior works on natural ABA-stacked trilayers [24-28], we couple the different spectrum 
layers to independent electrostatic gates, enabling independent tuning of the charge density in the  
system and the interlayer potential difference. We find that because of charge screening, the monolayer 
gate capacitance is strongly nonlinear, with its charge increasing approximately quadratically with gate 
voltages. Furthermore, we demonstrate tunable interlayer Landau level (LL) crossings by varying both 
gate voltages. The crossing pattern is modified at the charge neutrality point (CNP) of the bilayer when a 
nonzero electric field across the bilayer opens a band gap [23], resulting from the electrostatic potential 
shift required to tune the bilayer from electron to hole doping. From the estimated interlayer 
capacitance, we simultaneously determine the electronic Fermi velocity vF within the monolayer and 
effective mass m in the bilayer, as well as LL spectrum for each layer of the TTL for the first time. 
Significant vF renormalization was not observed, consistent with ref. [13] in twisted bilayers at large 
twist angles. However, we find a significantly larger estimated m than in isolated bilayers, suggesting 
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that the interlayer interaction can renormalize the TTL layers’ band structure, similar to the behavior 
reported previously for twisted bilayer stacks [29], although the magnitude of the renormalization we 
observe is much larger in the TTL system. 

The devices consist of an hBN-encapsulated TTL stack. Figure 1(a) shows the device geometry 
and capacitances Ci, Cb, and Ct, which are the geometric interlayer, bottom and top gate capacitances per 
unit area, respectively, and the tunnel junction between the bilayer and monolayer. The stack is etched 
and contacted in a Hall bar geometry that enables measurement of the longitudinal resistance Rxx and the 
Hall resistance Rxy [30]. The top metal gate and bottom Si gate independently tune the total charge 
density and the perpendicular electric field on the two layers. A measurement of Rxx is shown in the 
color plot in Fig. 1(b) inset vs. the top gate voltage Vtg and the bottom gate voltage Vbg. The bright line is 
a resistance maximum for each gate trace. Line traces of the 4-terminal Rxx(Vbg) are shown in the Fig. 
1(b) main panel, taken at a temperature T=1.5 K.  The resistivity shows a maximum at Vtg=2 V and 
Vbg=-20 V. For the large twist angle and weak tunnel coupling in our devices the bilayer and monolayer 
graphene can be considered as parallel resistors, similar to twisted bilayers [19]. Both the bilayer and 
monolayer have their resistivity maximum at the CNP, and the linear bright region in the Fig. 1(b) inset 
occurs near total charge neutrality summed over both layers where the parallel combination of 
resistances is maximized, while the largest Rxx maximum shown in Fig. 1(b) corresponds approximately 
to both layers being simultaneously charge neutral.  
 In a perpendicular magnetic field B, LLs form in the two layers’ energy spectra [23]. However, 
because the bilayer’s quasiparticles are massive while the monolayer’s are massless, their spectra are 
very different. The bilayer LL energies for index l are ( )1−llω±=E cl ! , where ωc=eB/m is the 
cyclotron frequency, e is the electric charge, ħ is Planck’s reduced constant, and m the effective mass of 
carriers. The zero energy LL is eightfold degenerate, whereas higher l>1 levels are fourfold degenerate 
[23]. In contrast, the monolayer LL energies are Ble±v=E Fl !2 , with all levels fourfold degenerate 
[23]. The LL degeneracies in the mono- and bilayers can be lifted by symmetry breaking perturbations 
such as electron-electron interactions or environmental coupling [31, 32]. 

To investigate LL filling in the two coupled layers, we measure Rxx versus Vtg and Vbg at B=8 T 
[Figure 2(a)]. Linear minima features, such as those indicated by the black arrows, correspond to 
spectral gaps between LLs, while bright features present within the gaps such as those marked by the 
black dots are associated with steps in the Hall conductance of 8e2/h, where h is Planck’s constant [30], 
indicating that these correspond to LL crossings or inter-LL transitions.[19]  Shallower minima also 
occur, indicating symmetry breaking perturbations and the lifting of the LL degeneracies [31, 32]. The 
bilayer l=0,1 states are shown between the two arrows, where the density changes by 8 LLs between the 
prominent gap features, with the line trace shown in the Fig. 2(a) inset. In Fig. 2(a), straight lines 
connecting LL degeneracy points at constant bilayer charge, such as those marked by the blue dashed 
lines, are uniformly spaced. In contrast, crossing points at constant monolayer charge, such as those 
marked by the red dashed lines, are spaced non-uniformly, with the largest spacing at low doping. This 
shows that the gate capacitance to the monolayer is nonlinear while the bilayer gate capacitance appears 
to be linear. 
 To understand this behavior, each layers’ band structure is assumed to be that of the isolated 
layers due to weak tunnel coupling (although with possibly renormalized parameters) [11]. Since the 
bilayer LL energies are ∝B, while those of the monolayer are ∝B1/2, monolayer or bilayer LL states will 
tend to preferentially fill depending on which has the smaller level spacing near the Fermi level. 
Considering interactions, electrons are subject to interlayer repulsion and gate charge screening. The 
latter depends on the interactions of electrons within the same layer. This screening is imperfect, which 
leads to quantum corrections to the capacitance [22, 33-37]. These effects are expected to strongly affect 
the LL filling behavior and layer capacitance. Moreover, because of the imperfect screening, an electric 
field can exist between the two layers, yielding an electrostatic potential difference between them. 
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However, at equilibrium, the two layers’ electrochemical potentials, which are the sum of the 
electrostatic and chemical potentials within the layers, are expected to be equal and are at the ground 
potential of the circuit. With these assumptions, the expected slopes ΔVtg/ΔVbg connecting the major 
features in the data in the Vbg-Vtg plane can be determined by equating two different expressions for the 
charge density on each layer. One is determined from the electrostatic potentials across the capacitances 
in the circuit. The other is obtained from the electrostatic potentials in each layer using a Thomas-Fermi 
model and their density of states[23] yielding:  
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Here, φm (φb) is the electrostatic potential of the monolayer (bilayer), and σ determines the sign of the 
charge density in the monolayer. Solving these equations for φm and φb enables determination of the 
charge densities in the two layers and the constant charge condition for each layer versus Vtg and Vbg. 
We also assume that the electrostatic potentials of the gate electrodes are equal to their applied voltages, 
neglecting quantum capacitance corrections for Ct and Cb. We focus on three predominant slopes in the 
Vtg-Vbg plane, those connecting crossing points at constant monolayer charge, mcmc, constant bilayer 
charge mcbc, and constant total charge, mc. Using eqs. 1 and 2 we find, to a good approximation, mc=-
Cb/Ct.[30] and obtain mc=-0.089 from the Fig. 2(a) data. From the measured Vbg spacing between 
successive Rxx dips at B=8 T, we find Cb=1.0 × 10-4 F/m2, and Ct=-Cb/mc=1.2 × 10-3 F/m2. Measuring the 
slope along the dashed red lines in Fig. 2(a) gives mcmc= -0.037, while the slope along the blue dashed 
lines gives mcbc=-0.14. Also from eqs 1. and 2 we find mcmc=-αCiCb/Ct [30], where α is a constant given 
by α≈[Ci+2me2/(πħ2)]-1 [30]. By using this equation for mcmc and its measured value we determine the 
dimensionless product αCi=0.41.  

To find Ci and α independently and determine m, we plot in Fig. 2(b) Rxx versus total electron 
density n and the total displacement field D=1/2(CbVbg-CtVtg) applied to all the layers. At constant n, D 
tunes the bilayer-monolayer interlayer potential Δφ  such that Δφ=diD/εi=D/Ci, where di is the interlayer 
spacing, and εi is the interlayer dielectric constant[19]. When D≠0, the displacement field across the 
bilayer Db⊥ opens a band gap within it Eg [23, 38].  

We determine Ci from the change in D necessary to tune the monolayer zeroth LLs through the 
gap (≡ΔDgap), using Δφ=Eg/e=ΔDgap/Ci, and obtaining Eg from Db⊥ based on previous bilayer 
measurements [23]. We first find the gate voltage conditions yielding Eg=0 and Db⊥=0, using the 
degeneracy at bilayer filling factor νb=-3 occurring when Db⊥=0 [39], which produces the peak in the red 
curve in Fig. 2(c). We next determine ΔDgap by finding the change in D necessary to tune the monolayer 
0th LL states through the bilayer gap. The alignment between the monolayer 0th LL states and bilayer 
valence band states occurs along the black curve in Fig. 2(c) [taken along the black dashed line in Fig. 
2(b)], at the rightmost of four peaks, with the corresponding alignment shown in Fig. 2(d) (alignment 
A). [The other three peaks are produced by LL crossings shown in Fig. 2(e).] The black arrow in Fig. 
2(b) marks where the lowest zeroth LL monolayer (cyan dotted line) and bilayer electron states (green 
dotted line) align [alignment B, Fig 2(f)]. The ΔDgap to tune between the A and B alignments is 
ΔDgap≈140 mV/nm [Fig. 2(c)]. The magnitude of Eg is determined by ΔDb⊥≈250 mV/nm, measuring 
from Db⊥=0 to the midpoint between the two leftmost dashed lines to account for the increase of Eg as D 
increases. From ΔDb⊥ we determine Eg≈20 meV from previous literature [40, 41]. Using Eg/e=ΔDgap/Ci 
we find Ci=0.062 F/m2. This is approximately a factor of two larger than the value obtained by a parallel 
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plate model for the two layers, suggesting a relative interlayer dielectric constant ~2. From this we find 
m=0.065me, where me is the free electron mass.  

To investigate LL filling in both layers as B and the gate voltages vary, Fig. 3(a) shows Rxx 
versus B and Vbg with Vtg continuously adjusted so that D=0. The LL crossings are identified as bright 
regions in the data where Rxx dips at constant total filling factor are suppressed, such as that marked by 
the arrow. Changing Vtg so that D≠0 tunes the filling pattern, as shown in Fig. 3(b), which shows data 
with Vtg=Vbg/4×Cb/Ct having sparser crossing points.  

To understand this behavior we consider that although the closest gate to each layer dominantly 
affects its charge, due to imperfect screening each gate affects both layers’ charge. Using eqs. 1 and 2 
we find Vbg corresponding to the crossing points for appropriate integer monolayer filling factors ν>0 as:   
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where C0=π(αCiCb+Ctβ) and Vtg is assumed to be maintained such that Vtg=βVbg, with β a constant [30]. 
The Vbg corresponding to the crossing points consists of one term proportional to mvF, and another 
independent of band structure parameters. For D=0, β=Cb/Ct. The gate voltages of the crossing points 
for this case is plotted for different values of ν in Fig. 3(c). A fit to the data using this equation yields a 
value for the product mvF≈ 6 × 1026 kg·m/s, without requiring direct knowledge of Ci. This gives vF ~1 × 
106 m/s for all the curves, using the previously determined m. This vF value agrees well with the value 
found in previous work [23], with the renormalization expected to be small due to the large twist angle. 
However, as determining m and vF independently of their product mvF requires estimation of Ci, these 
independent values can be considered only estimates. This is because the result for an isolated bilayer’s 
Eg dependence on D was used to estimate Ci. Nevertheless, the analysis suggests that the interlayer 
interaction renormalizes the layers’ band structure, as the measured product mvF is larger than that of 
isolated layers. As previous work has shown that electron-electron interactions renormalize the Fermi 
velocity in graphene monolayers [42], the strong interlayer electronic interactions could cause a similar 
renormalization in the TTL. Additionally, theoretical calculations based on non-interacting electrons in 
the lower symmetry lattice of the twisted layers [11] indicate that both vF and m tend towards their 
isolated layer values when the angle becomes larger, while vF gets smaller and m gets larger as the twist 
angle approaches zero. In our study, the angle is unknown, although the absence of secondary resistance 
peaks suggest the angle is > 1°. Therefore, a comprehensive understanding of this phenomenon will 
require future work, for example in conjunction with STM experiments to measure the twist angle, as 
well as theoretical work to understand the influence of interactions on this system.   

Putting β=1/4×Cb/Ct  into eq. 3 shows that the voltage scales for the LL crossings increase 
compared to when D=0, as observed. In addition, rearranging this equation indicates that the monolayer 
charge is approximately quadratic in the gate voltages over the gate voltage ranges studied. This 
accounts for the non-uniform spacing of the features corresponding to LL crossings at fixed monolayer 
charge indicated by the red dashed lines in Fig. 2(a). In contrast, for the bilayer its nearly constant 
density of states yields a more linear capacitance for the gate voltage ranges studied [30]. 

Finally, we see that along the lines of crossing points with constant monolayer charge, some  
expected crossing points appear to be absent, for example at the point marked by the open circle in the 
lower portion of Fig. 2(b). This is illustrated in Fig. 4(a), which shows several line traces each at 
constant density with total filling factor νT=10, 6, and 2 taken along the vertical white dotted lines in 
Fig. 2(b). The corresponding level crossing diagram is shown in Fig. 4(b). While two regions of 
enhanced Rxx corresponding to crossing points are visible in the lowest curve [Figs. 4(a-b), green solid 
square and purple solid triangle] the center curve has only one [Figs. 4(a-b), red solid square], and the 
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top curve has zero. For the top curve, this occurs because the bilayer electrostatic potential must change 
by Eg/e to tune the Fermi level across the gap. As a result, the crossing points are displaced, so that when 
D is tuned to an expected crossing point the situation is as shown in Fig. 4(a-b) by the open blue squares, 
which accounts for the missing peak. For the center curve, a similar situation arises [Fig. 4(a-b), open 
red circles]. These points are also labeled by the corresponding symbols in Fig. 2(b). Similar behavior is 
also observable for hole doping [30]. Finally, we note that the ML 0th LLs cross the BL states without 
significant displacement because the bilayer band gap is relatively small at the crossing point [Fig. 4(b)]. 

In sum, using the novel TTL dual-gated structure, we are able to tune the interlayer LL filling 
rates by varying the voltages on the dual gates. Also, because of screening the total capacitance of the 
monolayer including quantum capacitance corrections is strongly nonlinear, exhibiting a quadratic 
dependence of its charge on the gate voltages. On the other hand, the bilayer capacitance is observed to 
be more linear. Data analysis enables energy spectroscopy of the monolayer and bilayer Landau levels, 
indicating that the spectrum is renormalized by the interlayer interaction. In future work, placing 2D 
systems in close proximity to systems with a known spectrum, such as graphene bilayers, may enable 
detailed investigation of their electronic structure and interactions.  
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FIG. 1 Device geometry and B=0 transport data. (a) Schematic diagram of layer stack showing effective 
circuit of capacitances and tunnel junction. BL, bilayer graphene, ML monolayer graphene. (b) Inset: 
Rxx(Vbg, Vtg) at B=0. The bright linear feature is the charge neutrality line where the total charge carrier 
density is zero. Main panel: Line cuts Rxx(Vbg) at Vtg ranging from -7 V to 7 V. The numbers indicate Vtg 
values in volts. 
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FIG. 2 Magnetotransport data. (a) Rxx(Vbg,Vtg) at B=8 T. The red (blue) dashed line connects crossing 
point features for which the monolayer (bilayer) charge is constant. Inset: Plot of Rxx taken along the 
dashed black line in the main panel. The arrows mark minima at νb=±4 (b) Rxx(n, D) at B = 8 T. The LL 
gaps are labeled by (j, k), where j (k) is the ML (BL) LL filling factor. (c) Line traces along the red and 
black dotted lines in (b) with corresponding colors. The rightmost vertical dotted line corresponds to 
Db⊥=0. (d) Schematic energy diagram of level alignments at D value labeled by A and marked by 
leftmost vertical dotted line in (c). The fourfold energy splitting of the states is indicated schematically. 
All the states are shown in gray except the uppermost hole-like bilayer state (blue), the lowermost 
bilayer electron-like state (green) and the lowest energy monolayer state (cyan). (e) Schematic energy 
(E) diagram of level crossings vs. D near the alignment in (d) using the same color labeling. Crossings 
corresponding to the three leftmost peaks in the black curve of (c) are labeled by the corresponding 
black circles, triangles and squares. (f) Same as in (d) but for the B alignment labeled by B. 
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FIG. 3 Gate-tunable Landau level crossings. (a) Rxx(Vbg, B), where the top gate is adjusted to maintain 
D=0. The arrow indicates a LL crossing point. (b) Similar plot as in (a), but with the ratio Vtg/Vbg 

maintained at 0.25×Cb/Ct. The crossing points are sparser than in (a). (c) The gate voltage of the crossing 
points from (a) is plotted for a number of different values of ν. The Fermi velocities obtained from the 
fits are 1.2, 1.0, 0.9 and 0.9 × 106 m/s for ν=4, 8, 12 and 16, respectively. 
 
 
 
 

 
 
 
FIG. 4 (a) Rxx line traces vs. D for different total filling factors. Plot of Rxx vs. D for total filling factors 
νT=2, 6, and 10. Two crossings are visible for νT=10, one for νT=6, and none for νT=2. Upper two curves 
are offset to align the expected crossing points. Filling of each layer given in (j,k) notation. (b) Landau 
level crossing diagram vs. D, features in (a) labeled by corresponding symbols. Solid lines, ML levels; 
dotted lines BL levels. The 0th ML LL is shown in red. The bilayer band gap Eg(D) is indicated with a 
schematic dependence on D. For each D, the zero of energy is set at the center of the BL band gap. The 
fourfold degeneracy breaking is omitted for clarity. 
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