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We provide numerical evidence that a finite-dimensional inertial manifold on which the dynamics
of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a
set of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold
for Kuramoto-Sivashinsky system, and find it to be equal to the ‘physical dimension’ computed
previously via the hyperbolicity properties of covariant Lyapunov vectors.

Dynamics in chaotic dissipative systems is expected
to land, after a transient period of evolution, on a finite-
dimensional object in state space called the inertial man-
ifold [1-5]. This is true even for infinite-dimensional sys-
tems described by partial differential equations, and of-
fers hope that their asymptotic dynamics may be repre-
sented by a finite set of ordinary differential equations,
a drastically simplified description. The existence of a
finite-dimensional inertial manifold has been established
for systems such as the Kuramoto-Sivashinsky, the com-
plex Ginzburg-Landau, and some reaction-diffusion sys-
tems [2]. For the Navier-Stokes flows its existence re-
mains an open problem [3], but dynamical studies, such
as the determination of sets of periodic orbits embed-
ded in a turbulent flows [6, 7], strengthen the case for
a geometrical description of turbulence. However, while
mathematical approaches may provide rigorous bounds
on dimensions of inertial manifolds, their constructive
description remains a challenge.

Recent progress towards this aim came from numer-
ical investigations of the covariant Lyapunov vectors
of spatio-temporally chaotic flows [3, 9], made possi-
ble by the algorithms developed in refs. [10-12]. These
works have revealed that the tangent space of a generic
spatially-extended dissipative system is split into two hy-
perbolically decoupled subspaces: a finite-dimensional
subspace of “entangled” or “physical” Lyapunov modes
(referred to in what follows as the “physical manifold”),
which is presumed to capture all long-time dynamics,
and the remaining infinity of transient (“isolated,” “spu-
rious”) Lyapunov modes. Covariant Lyapunov vectors
span the Oseledec subspaces [13, 14] and thus indicate
the intrinsic directions of growth or contraction at every
point on the physical manifold. The dynamics of the vec-
tors that span the physical manifold is entangled, with
frequent tangencies between them. The transient modes,
on the other hand, are damped so strongly that they are
isolated - at no time do they couple by tangencies to the

entangled modes. It was conjectured in [8, 9] that the
physical manifold provides a local linear approximation
to the inertial manifold at any point on the attractor,
and that the dimension of the inertial manifold is given
by the number of the entangled Lyapunov modes. Fur-
ther support for this conjecture was provided by ref. [15],
which verified that the vectors connecting pairs of recur-
rent points —points on the chaotic trajectory far apart in
time but nearby each other in state space— are confined
within the local tangent space of the physical manifold.

While these works showed that the physical manifold
captures the finite dimensionality of the inertial manifold,
they do not tell us much about how this inertial manifold
is actually laid out in state space.

In this letter, we go one important step further and
show that the finite-dimensional physical manifold can
be precisely embedded in its infinite-dimensional state
space, thus opening a path towards its explicit construc-
tion. The key idea [16] is to populate the inertial man-
ifold by an infinite hierarchy of unstable time-invariant
solutions, such as periodic orbits, an invariant skeleton
which, together with the local “tiles” obtained by lin-
earization of the dynamics, fleshes out the physical man-
ifold. Chaos can then be viewed as a walk on the inertial
manifold, chaperoned by the nearby unstable solutions
embedded in the physical manifold. Unstable periodic
orbits have already been used to compute global aver-
ages of spatiotemporally chaotic flows [6, 17-19].

There are infinitely many unstable orbits, and each of
them possesses infinitely many Floquet modes. While in
the example that we study here we do not have a de-
tailed understanding of the organization of periodic or-
bits (their symbolic dynamics), we show that one only
needs to consider a finite number of them to tile the phys-
ical manifold to a reasonable accuracy. We also show, for
the first time, that each local tangent tile spanned by
the Floquet vectors of an unstable periodic orbit splits
into a set of entangled Floquet modes and the remain-



ing set of transient modes. Furthermore, we verify nu-
merically that the entangled Floquet manifold coincides
locally with the physical manifold determined by the co-
variant Lyapunov vectors approach.

Throughout this letter, we focus on the one-
dimensional Kuramoto-Sivashinsky equation [20, 21],
chosen here as a prototypical dissipative partial differen-
tial equation that exhibits spatiotemporal chaos [22, 23],

Ug + UpU + Ugz + Ugzer =0, T € [Oa L]v (1)

with a real-valued ‘velocity’ field w(z,t), and the pe-
riodic boundary condition u(x,t) = u(x + L,t). Fol-
lowing ref. [19], we fix the size at L = 22, which is
small enough so that unstable orbits are still relatively
easy to determine numerically, and large enough for the
Kuramoto-Sivashinsky equation to exhibit essential fea-
tures of spatiotemporal chaos [24]. Dynamical evolution
traces out a trajectory in the oo-dimensional state space,
x(t) = f4(x(0)), with x(t) = u(z,t), where the time-
forward map f* is obtained by integrating x = v(x) up
to time ¢. The linear stability of the trajectory is de-
scribed by the Jacobian matrix J*(x(0)) = 9x(t)/9x(0),
obtained by integrating J = A.J, where A is the stabil-
ity matrix A(x) = dv(x)/0x . We integrate the system
(1) numerically, by a pseudo-spectral truncation [25, 20]
of u(x,t) = 332 _ap(t)e’®®, gp = 21 k/L to a finite
number of Fourier modes. For the numerical accuracy re-
quired here we found 31 Fourier modes (62-dimensional
state space) sufficient. The system is invariant under
the Galilean transformations u(z,t) — u(x — ct, t) + ¢,
reflection w(z,t) — —u(—x,t) = cu(x,t), and spatial
translations u(z,t) — u(x + ¢,t) = g(0) u(x,t), where
0 = 2x¢/L. The Galilean symmetry is reduced by set-
ting the mean velocity [dz u(z,t), a conserved quantity,
to zero. Due to the O(2) equivariance of Eq. (1), this
system can have two types of relative recurrent orbits
(referred to collectively as “orbits” in what follows): pre-
periodic orbits u(z,0) = ocu(x,T,) and relative periodic
orbits u(z,0) = ¢(0,) u(x,Tp), where g(6,) is the spatial
translation by distance ¢, = L8,/2m. All orbits used here
are found by a multiple shooting method together with
the Levenberg-Marquardt algorithm (see ref. [19] for de-
tails). In our analysis, we use 200 pre-periodic orbits
ppor, and 200 relative periodic orbits TPOT, 5 labelled by
their periods Tj,. These are the shortest period orbits
taken from the set of over 60000 determined in ref. [19]
by near-recurrence searches. The method preferentially
finds orbits embedded in the long-time attracting set,
but offers no guarantee that all orbits up to a given pe-
riod have been found. Floquet multipliers A; and vectors
e;(x) are the eigenvalues and eigenvectors of Jacobian
matrix J, = oJ» or J, = g(0,)JT for pre-periodic or
relative periodic orbits, respectively. The Floquet expo-
nents A; (if complex, we shall only consider their real
parts, with multiplicity 2) are related to multipliers by
Aj = In|A;|/T,. A high accuracy computation of all
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FIG. 1.  (Color online) (a) Floquet exponents for ppo,q o5

(circles), 7po,g 5, (squares), and Lyapunov exponents of a
chaotic trajectory (crosses). The inset shows a close-up of
the 8 leading exponents. ppo,, .5 and Tpo,q 5; have respec-
tively two and one positive Floquet exponents, A\12 = 0.033,
A1 = 0.328. Only one Lyapunov exponent is positive, A1 =
0.048. The number of the vanishing exponents is always two.
The fourth Lyapunov exponent is small but strictly negative,
A4 = —0.003. (b) Time series of local Floquet exponents
Aj(x(t)) for ppo,g 95- (¢) Close-up of (b) showing the 8 lead-
ing exponents. Dashed lines indicate degenerate exponent
pairs corresponding to complex Floquet multipliers.

Floquet exponents and vectors for this finite-dimensional
state space (the key to all numerics presented here) has
been made possible by the algorithm recently developed
in ref. [27]. For an orbit (\;, e;) denotes the jth Floquet
(exponent, vector); for a chaotic trajectory it denotes the
jth Lyapunov (exponent, vector).

Fig. 1 (a) shows the Floquet exponents spectra for the
two shortest orbits, ppo; o5 and 7po,g 5;, overlaid on the
Lyapunov exponents computed from a chaotic trajectory.
The basic structure of this spectrum is shared by all 400
orbits used in our study [28]. For chaotic trajectories, hy-
perbolicity between an arbitrary pair of Lyapunov modes
can be characterized by a property called the domination
of Oseledec splitting (DOS) [29, 30]. Consider a set of
finite-time Lyapunov exponents

N(x) = 2l (x)e; (9, )

with L? normalization ||e;(x)|| = 1. A pair of modes j <
¢ is said to fulfill ‘DOS strict ordering” if A7 (x) > A7(x)
along the entire chaotic trajectory, for 7 larger than some
lower bound 7y. Then this pair is guaranteed not to have
tangencies [29, 30]. For chaotic trajectories, DOS turned
out to be a useful tool to distinguish entangled modes
from hyperbolically decoupled transient modes [8, 9]. Pe-
riodic orbits are by definition the infinite-time orbits (7
can be any repeat of T},), so generically all nondegenerate
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FIG. 2. (Color online) A histogram of the principal angles ¢

between S, (the subspace spanned by the n leading Floquet
vectors) and S,, (the subspace spanned by the remaining d—n
Floquet vectors), accumulated over the 400 orbits used in our
analysis. (top panel) Forn =1,2,--- 7 (S, within the entan-
gled manifold) the angles can be arbitrarily small. (bottom
panel) For n = 8,10,12,---,28 (in the order of the arrow),
for which all entangled modes are contained in S,,, the angles
are bounded away from unity.

pairs of modes fulfill DOS. Instead, we find it useful to
define, by analogy to the ‘local Lyapunov exponent’ [31],
the ‘local Floquet exponent’ as the action of the strain
rate tensor [32] 2 D(x) = A(x)" + A(x) (where A is the
stability matrix) on the normalized jth Floquet eigenvec-
tor,

Aj(x) = j(x) " D(x) e;(x) = im A\ (x).  (3)
We find that time series of local Floquet exponents
Aj(x(t)) indicate a decoupling of the leading ‘entangled’
modes from the rest of the strictly ordered, strongly neg-
ative exponents [fig. 1 (b) and (c)]. Perhaps surprisingly,
for every one of the 400 orbits we analyzed, the number of
the entangled Floquet modes was always 8, equal to the
previously reported number of the entangled Lyapunov
modes for this system [15, 28]. This leads to our first
surmise: (1) each individual orbit embedded in the at-
tracting set carries enough information to determine the
dimension of the physical manifold.

For an infinite-time chaotic trajectory, hyperbolicity
can be assessed by measuring the distribution of mini-
mal principal angles [33, 341] between any pair of sub-
spaces spanned by Lyapunov vectors [8—10]. Numerical
work indicates that as the entangled and transient modes
are hyperbolically decoupled, the distribution of the an-
gles between these subspaces is bounded away from zero,
and that observation yields a sharp entangled-transient
threshold. This strategy cannot be used for individual
orbits, as each one is of a finite period, and the minimal
principal angle reached by a pair of Floquet subspaces
remains strictly positive. Instead, we measure the angle

distribution for a collection of orbits, and find that the
entangled-transient threshold is as sharp as for a long
chaotic trajectory: fig. 2 shows the principal angle dis-
tribution between two subspaces S, and S,, with S,
spanned by the leading n Floquet vectors and S, by the
rest. As in the Lyapunov analysis of long chaotic trajec-
tories [38], the distributions for small n indicate strictly
positive density as ¢ — 0. In contrast, the distribution
is strictly bounded away from zero angles for n > 8,
the number determined above by the local Floquet ex-
ponents analysis. This leads to our second surmise: (2)
the distribution of principal angles for collections of peri-
odic orbits enables us to identify a finite set of entangled
Floquet modes, the analogue of the chaotic trajectories’
entangled covariant Lyapunov vector modes.

It is known, at least for low-dimensional chaotic sys-
tems, that a dense set of periodic orbits constitutes the
skeleton of a strange attractor [16]. Chaotic trajectories
meander around these orbits, approaching them along
their stable manifolds, and leaving them along their un-
stable manifolds. If trajectories are indeed confined to
a finite-dimensional physical manifold, such shadowing
events should take place within the subspace of entan-
gled Floquet modes of the shadowed orbit. To analyze
such shadowing, we need to measure the distances be-
tween the chaotic trajectories and the invariant orbits.
We use symmetry reduction, i.e., replacement of a group
orbit of states identical up to a symmetry transformation
by a single state. Since translation u(z,t) — u(z—+¢,t) on
a periodic domain implies a rotation ay(t) — e'*‘ay(t)
in Fourier space, we choose to send both trajectories and
orbits to the hyperplane Im(a;) = 0,Re(a;) > 0, called
the first Fourier-mode slice [35], and measure distances
therein. This transformation reads

a(z,t) = g(=0(t))u(z, ) (4)

with 6(t) = argaq(t). In the slice, both relative periodic
orbits and pre-periodic orbits are reduced to periodic or-
bits. From Eq. (4), one easily finds how infinitesimal
perturbations du(z,t) are transformed [36]. This allows
us to define the symmetry-reduced tangent space, with
the in-slice perturbations §a(x, t), Jacobian matrix J*(a),
Floquet matrix J, (@) and Floquet vectors é;(@). The di-
mension of the slice subspace is one less than the full
state space: slice eliminates the marginal translational
direction, while the remaining Floquet multipliers A; are
unchanged. Therefore, for the system studied here, there
are only seven entangled modes, with one marginal mode
(time invariance) in the in-slice description, instead of
eight and two, respectively, in the full state space de-
scription. A shadowing of an orbit u,(x,t’) by a nearby
chaotic trajectory u(z,t) is then characterized by the in-
slice separation vector

At(z,t) = u(x, t) — up(z, tp), (5)

where t,, is chosen to minimize the in-slice distance [|Ad||.
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FIG. 3. (Color online) (a) Shadowing event between a
chaotic trajectory and pposs 59, drawn over 27,. (b) Para-
metric plot of sin p,(t) vs ||Ad(z,t)|| during the single shad-
owing event shown in (a), for n = 6,7,8. (c) Same as (b), but
a total of 230 shadowing events of Ppo,; 34 are used. (d) Av-
erage of sin ¢, in (c¢), taken within each bin of the abscissa,
for n = 4,5,6,7,9,11,17,21,25 from top to bottom. (e)(f)
Same as (c)(d), respectively, but for 217 shadowing events
with Tpog, g4. The dashed lines show sin ¢, o |[|Ad|| in all
panels.

Now we test whether the Ad(z,t) is confined to the
tangent space spanned by the entangled in-slice Floquet
vectors. To evaluate this confinement, one needs to take
into account the nonlinearity of the stable and unstable
manifolds for finite amplitude of Ad(x,t). We decompose
the separation vector as

Ad(z,t) = n (2, 1) + wn (2, 1), (6)

where 0, (x,t) is a vector in the subspace S'H spanned by
the leading n in-slice Floquet vectors and wy,(z,t) is in
the orthogonal complement of S,. Ifnis large enough so
that S,, contains the local approximation of the inertial
manifold, we expect ||w,|| ~ ||0,]> ~ ||Ad||?> because of
the smoothness of the inertial manifold; otherwise ||wy||
does not vanish as ||Ad|| — 0. In terms of the angle ¢,
between S, and A, sin @y, ~ ||wn||/||0a]] ~ ||Ad|| for n
above the threshold, while sin ¢,, remains non-vanishing
otherwise.

Following this strategy, we collected segments of a long
chaotic trajectory during which it stayed sufficiently close

to a specific orbit for at least one period of the orbit.
Fig. 3 (a) illustrates such a shadowing event for Dposs s9.
A parametric plot of sin ¢, (t) vs. |[|Ad(z,t)|| during this
event is shown in fig. 3 (b) for n = 6,7, 8 (blue circles, red
squares, orange triangles, respectively). We can already
speculate from such a single shadowing event that sin ¢,
does not necessarily decrease with ||Ad|| for n < 7, while
it decreases linearly with ||Aa|| for n > 7. This thresh-
old is clearly identified by accumulating data for all the
recorded shadowing events with ppos; 39, fig. 3 (c): siny,
is confined below a line that depends linearly on ||Ad|
if and only if n > 7. Similarly there is a clear separa-
tion in the average of sin, taken within each bin of
the abscissa [fig. 3 (d)]. This indicates that for n < 7
(empty symbols), typical shadowing events manifest sig-
nificant deviation of Ad from the subspace S,, whereas
for n > 7 (solid symbols) A is always confined to S,,. We
therefore conclude that shadowing events are confined to
the subspace spanned by the leading 7 in-slice Floquet
vectors, or equivalently, by all the 8 entangled Floquet
vectors in the full state space. The same conclusion was
drawn for 7pos, 4, [fig. 3 (e) and (f)] and five other or-
bits (not shown). We also verified that, when a chaotic
trajectory approaches an orbit, the subspace spanned by
all entangled Floquet modes of the orbit coincides with
that spanned by all entangled Lyapunov modes of the
chaotic trajectory. This implies our third surmise: (3)
the entangled Floquet manifold coincides locally with the
entangled Lyapunov manifold, with either capturing the
local structure of the inertial manifold.

In summary, we used the Kuramoto-Sivashinsky sys-
tem to demonstrate by six independent calculations that
the tangent space of a dissipative flow splits into entan-
gled vs. transient subspaces, and to determine the dimen-
sion of its inertial manifold. The Lyapunov modes ap-
proach of refs. [3-10, 15, 28] identifies (1) the “entangled”
Lyapunov exponents, by the dynamics of finite-time Lya-
punov exponents, Eq. (2); and (2) the “entangled” tan-
gent manifold, or “physical manifold,” by measuring the
distributions of angles between covariant Lyapunov vec-
tors. The Floquet modes approach [27] developed here
shows that (3) Floquet exponents of each individual or-
bit separate into entangled vs. transient, Fig. 1; (4) for
ensembles of orbits, the principal angles between hyper-
planes spanned by Floquet vectors separate the tangent
space into entangled vs. transient, fig. 2; (5) for a chaotic
trajectory shadowing a given orbit the separation vector
lies within the orbit’s Floquet entangled manifold, fig. 3;
and (6) for a chaotic trajectory shadowing a given orbit
the separation vector lies within the covariant Lyapunov
vectors’ entangled manifold.

All six approaches yield the same inertial manifold di-
mension, reported in earlier work [15, 28]. The Floquet
modes / unstable periodic orbits approach is construc-
tive, in the sense that periodic points should enable us,
in principle (but not attempted in this letter), to tile the



global inertial manifold by local tangent spaces of an en-
semble of such points. Moreover, and somewhat surpris-
ingly, our results on individual orbits’ Floquet exponents,
fig. 1(b) and (c), and on shadowing of chaotic trajecto-
ries, fig. 3, suggest that each individual orbit embedded
in the attracting set contains sufficient information to de-
termine the entangled-transient threshold. However, the
computation and organization of unstable periodic orbits
is still a major undertaking, and can currently be carried
out only for rather small computational domains [7, 19].
The good news is that the entangled Lyapunov modes
approach [8] suffices to determine the inertial manifold
dimension, as Lyapunov modes calculations only require
averaging over long chaotic trajectories, are much eas-
ier to implement, and can be scaled up to much larger
domain sizes than L = 22 considered here.

We hope the computational tools introduced in this
letter will eventually contribute to solving outstanding is-
sues of dynamical systems theory, such as the existence of
an inertial manifold in the transitional turbulence regime
of the Navier-Stokes equations.
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tuation & Structure’, and JSPS Core-to-Core Program
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