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In this note we prove a simple theorem in quantum information theory, which implies that bulk
operators in the Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence can be recon-
structed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge.
This is an improvement on existing reconstruction methods, which have at most succeeded in the
smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Malda-
cena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting
the correspondence as a quantum error correcting code.

INTRODUCTION

The AdS/CFT correspondence tells us that certain
large-N strongly-coupled CFTs define theories of quan-
tum gravity in asymptotically AdS space [1–6]. For this
definition to be complete, we need to know how to use
CFT language to ask any question of interest in the bulk.
The most basic items in this dictionary are:

• Quantum states in the Hilbert space of the CFT
correspond to quantum states in the bulk.

• The conformal and global symmetry generators in
the CFT correspond to the analogous asymptotic
symmetries in the bulk. For example the CFT
Hamiltonian maps to the ADM Hamiltonian, and
a U(1) charge maps to the electric flux at infinity.

• In the large N limit, any single-trace primary oper-
ator O(x) in the CFT, with scaling dimension ∆ of
order N0, corresponds to a bulk field φ(x, r). They
are related by the “extrapolate dictionary” [4, 7, 8]

O(x) = lim
r→∞

r∆φ(x, r) . (1)

These give an excellent starting point for understanding
the correspondence, but the limiting procedure in the ex-
trapolate dictionary makes it difficult to concretely dis-
cuss what is going on deep within the bulk. There is a
good reason for this: although the CFT side of the du-
ality is defined exactly, the bulk side is ultimately some
nonperturbative theory of quantum gravity, which is only
approximately given by a semiclassical path integral over
local bulk fields. This means that any attempt to “back
off of the extrapolate dictionary” and formulate a CFT
representation of the bulk operator φ(x, r), usually called
a reconstruction, must itself be only an approximate no-
tion. Nonetheless, there is a standard algorithm for pro-
ducing such a φ(x, r) perturbatively in 1/N : one con-
structs it by solving the bulk equations of motion with
boundary conditions (1) [4, 9–14]. This algorithm has
the nice feature that it can be done quite explicitly, but

it has the disadvantage that it relies on solving a rather
nonstandard Cauchy problem [11, 15]. In this paper we
will refer to it as the HKLL procedure, after [9], who were
the first to study it in detail.

The HKLL procedure has the interesting property that
it also is sometimes able to reconstruct a bulk operator
φ(x, r) as a CFT operator with nontrivial support only
on some spatial subregion A of a boundary Cauchy slice
Σ [9, 14]. This is believed to occur whenever the point
(x, r) lies in the causal wedge of A, denoted CA.1 CA is
defined as the intersection in the bulk of the bulk causal
future and past of the boundary domain of dependence
of A [16].

Causal wedge reconstruction via the HKLL procedure
gives an explicit illustration of “subregion-subregion du-
ality”, which is the notion that a spatial subregion A
in the boundary theory contains complete information
about some subregion of the bulk [15, 17, 18]. It has
been proposed however that the subregion dual to A is
not just CA, but rather a larger region: the entanglement
wedge EA [18–20]. To define the entanglement wedge, we
must first define the HRT surface χA [21] (the covariant
generalization of the Ryu-Takayanagi proposal [22]). χA
is defined as a codimension-two bulk surface of extremal
area, which has boundary ∂χA = ∂A and is homologous
to A through the bulk (in the event that multiple such
surfaces exist, it is the one with least area). The HRT
formula tells us that at leading order in 1/N , the area of
χA is proportional to the von Neumann entropy of the
region A in the CFT [21–23]. The entanglement wedge
EA is then defined as the bulk domain of dependence of
any achronal bulk surface whose boundary is A ∪ χA.

Recently, plausibility arguments for entanglement
wedge reconstruction have been developing along two dif-
ferent lines. [24] proposed a re-interpretation of causal

1 As mentioned above, this reconstruction relies on solving a non-
standard Cauchy problem [11, 15]. In general it is not known if
the solution really exists, but it can be found explicitly (in a dis-
tributional sense [14]) for the case of spherical boundary regions
in the vicinity of the AdS vacuum; in this case it is called the
AdS-Rindler reconstruction.
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wedge reconstruction as quantum error correction, which
is a structure that very naturally allows an extension to
entanglement wedge reconstruction. This was explicitly
realized in toy models [25, 26]. At the same time it has
gradually been understood that a proposal [27] for the
first 1/N correction to the HRT formula is indicative
that entanglement wedge reconstruction should be possi-
ble [24, 28, 29]. In particular Jafferis, Lewkowycz, Mal-
dacena, and Suh (JLMS) have given a remarkable bulk
formula for the modular Hamiltonian associated to any
CFT region, which implies that the relative entropy of
two states in a boundary spatial region A is simply equal
to the relative entropy of the two bulk states in EA [29].
The purpose of this paper is to tie all of these ideas to-
gether into a proof that entanglement wedge reconstruc-
tion is in fact possible in AdS/CFT: given a boundary
subregion A, all bulk operators in EA have CFT recon-
structions as operators in A.

ENTANGLEMENT WEDGE RECONSTRUCTION
AS QUANTUM ERROR CORRECTION

We mentioned above that the holographic nature of
AdS/CFT prevents bulk operator reconstruction from
being a precise notion. This reveals itself not just in
the perturbative nature of the the HKLL algorithm, but
also in its regime of validity. As one acts with more
and more reconstructed operators in a region, the thresh-
old for black hole formation is eventually crossed. This
leads to a breakdown of the construction. In [24] this
was formalized into the notion that one should think of
reconstructed bulk operators as only making sense in a
code subspace of the CFT Hilbert space, which we denote
Hcode. The choice of this subspace is not unique, since
in general we can choose to define it based on whatever
observables we are interested in studying, but the sim-
plest thing to do is choose a state which we know has a
geometric interpretation, and then consider the subspace
of all states where the backreaction of the metric about
that geometry is perturbatively small.2

As a concrete example, we can consider the subspace
of states of the CFT on a sphere whose energy is less
than that of a Planck-sized black hole in the center of
the bulk, together with the image of this subspace under
the conformal group. For example in the N = 4 super
Yang-Mills theory with gauge group SU(N), and with
gauge coupling g ∼ 1 to equate the string and Planck
scales, this corresponds to the set of primary operators

2 This is an overly conservative definition of the code subspace,
since a certain amount of backreaction (such as that present in
the solar system) can be included by resumming subclasses of
diagrams in the perturbative expansion [11, 30]. We adopt it
nonetheless to simplify our arguments below.

FIG. 1. Factorizing the bulk and boundary on a time slice.
The entanglement wedge EA is shaded. For simplicity we have
shown a connected boundary region A, although this might
not be the case.

whose dimensions are . N1/4, together with their con-
formal descendants. If the duality is correct, meaning
that correlation functions of local boundary operators in
these states can be reproduced by bulk Feynman-Witten
diagrams with some effective action,3 then the machinery
of [4, 9–14] enables us to explicitly reconstruct all low-
energy bulk operators φ(x, r) in such a way that their
correlation functions in any state in the code subspace
agree with those computed in bulk effective field theory
with that effective action to all orders in 1/N . For this to
work in detail we must choose some sort of covariant UV
cutoff in the bulk, but we will not discuss this explicitly
in what follows.

We can now describe entanglement wedge reconstruc-
tion. Say that we split a Cauchy slice Σ of the boundary
CFT into a region A and its complement A. The CFT
Hilbert space has a tensor factorization as

HCFT = HA ⊗HA . (2)

Similarly we can think of the code subspace as factorizing
as

Hcode = Ha ⊗Ha , (3)

where Ha denotes the Hilbert space of bulk excitations
in EA, and Ha denotes the Hilbert space of bulk excita-
tions in EA. We illustrate this in Figure 1. Both tensor
factorizations are complicated by the fact that gauge con-
straints might be present [31–38], but likely this problem
can be absorbed into the choice of UV cutoff (as shown
for U(1) gauge fields by [39]). We could dispense with
this issue by formulating our arguments in terms of sub-
algebras instead of subfactors, see [32] for the relevant
definitions, but we have opted for the latter for familiar-
ity.

Entanglement wedge reconstruction is then the state-
ment that any bulk operator Oa acting within Ha can

3 See [6] for a discussion of which CFTs have this property, and
also for how to determine the effective action in terms of CFT
data if they do.



3

always be represented in the CFT with an operator OA
that has support only on HA. In fact this is the precise
definition of the idea that the operator Oa can be “cor-
rected” for the erasure of the region A [40], and the obser-
vation that a given Oa can be reconstructed on different
choices of A reflects the ability of the code to correct for
a variety of erasures [24]. We will establish the existence
of OA below, but first we need to review a recent result
that will be essential for the proof.

REVIEW OF THE JLMS ARGUMENT

In [29], JLMS argued for an equivalence of relative en-
tropy between bulk and boundary. In this section we
give a more detailed derivation of this result, which also
extends it to higher orders in the semiclassical expansion
given an assumption we state precisely below. Let us
first recall that the von Neumann entropy of any state is
defined as

S(ρ) ≡ −Tr (ρ log ρ) , (4)

its modular Hamiltonian is defined as

Kρ ≡ − log ρ , (5)

and the relative entropy of a state ρ to a state σ is

S(ρ|σ) ≡ Tr (ρ log ρ)− Tr (ρ log σ) = −S(ρ) + Tr (ρKσ) .
(6)

Relative entropy is non-negative, and vanishes if and only
if ρ = σ. Under small perturbations of the state, the en-
tropy and modular Hamiltonian are related by the “first
law of entanglement”:4

S(ρ+ δρ)− S(ρ) = Tr (δρKρ) +O(δρ2) . (7)

Now consider the setup of the previous section, where
in some holographic CFT we pick a code subspace
Hcode = Ha ⊗ Ha in which effective field theory per-
turbatively coupled to gravity is valid, and in which all
states can be derived from path integral constructions
in this effective theory. Following JLMS, we recall that
Faulkner et al. [27] showed that such states5 ρ obey

S(ρA) = S(ρa) + Tr (ρaAloc) . (8)

4 This is derived in e.g. [41, 42] by linearizing the entropy.
To deal with possible non-commutativity of ρ and δρ one
can use the Baker-Campbell-Hausdorff formula and recall that
Tr (A[B,C]) = 0 if A and B are simultaneously diagonalizable.

5 The argument of [27], like the earlier classical argument [23],
assumes that the von Neumann entropy can be found by an ana-
lytic continuation of certain “Renyi entropies” Tr(ρn), and that
the bulk path integral for calculating the n-th Renyi entropy does
not spontaneously break the associated Zn symmetry. There is
also some subtlety in applying the argument to states that do not
possess a moment of time-reflection symmetry, but this seems to
just be a matter of convenience, and an argument that dispenses
with this criterion will appear elsewhere soon [43].

Here Aloc denotes a bulk operator that is a local integral
over the HRT surface χA. At leading order in 1/N , or
equivalently at leading order in the gravitational coupling
G, we have

Aloc =
Area(χA)

4G
, (9)

as required by the HRT formula, but Aloc receives correc-
tions at higher orders in 1/N [27, 44], or in the presence
of more general gravitational interactions [45–55].

In fact [27] only established (8) to order N0. In [56] it
was suggested that (8) continues to hold to all orders in
1/N , provided that one always defines χA to be extremal
with respect to the sum on the right hand side of (8)
(sometimes called the “generalized entropy”); such a χA
is known as a quantum extremal surface. We will assume
this to be the case throughout the code subspace in what
follows: if it is not then our arguments only establish
entanglement wedge reconstruction to order N0.

To establish the JLMS result, we now observe that
linearizing (8) about σ and using the first law (7), we
have

Tr (δσAKσA
) = Tr

(
δσa

(
A{σ}loc +Kσa

))
. (10)

Here we have taken δσ to be an arbitrary perturbation
that acts within the code subspace Hcode. We have writ-

ten A{σ}loc to emphasize that Aloc is still located at the
surface defined by extremizing S(σa) +Aloc. (10) is lin-
ear in δσ, so we can integrate it to obtain

Tr (ρAKσA
) = Tr

(
ρ{σ}a

(
A{σ}loc +Kσa

))
, (11)

where now ρ and σ are arbitrary states acting within

Hcode. We have written ρ
{σ}
a to clarify that we are still

factorizing the bulk Hilbert space at the quantum ex-
tremal surface for σ, even though we are now considering
another state ρ as well. Since (11) holds for any ρ acting
within Hcode, it implies that

ΠcKσA
Πc = Kσa

+A{σ}loc , (12)

where Πc is the projection operator onto the code sub-
space, and where we have defined the operators on the
right hand side to annihilate H⊥code. This is one of the
main results of [29].

Moreover combining (6), (8), and (11), we find that

S(ρA|σA) =S(ρ{σ}a |σa)

+
[
Tr
(
ρ{σ}a A

{σ}
loc

)
− Tr

(
ρ{ρ}a A

{ρ}
loc

)
+ S

(
ρ{σ}a

)
− S

(
ρ{ρ}a

) ]
. (13)

To order N0 the terms in square brackets cancel due to

the extremality of χ
{ρ}
A with respect to S(ρa) +Aloc, so
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we find the equivalence of relative entropies which is the
other main result of [29].6

More generally, we find that the relative entropies dif-
fer by the difference of generalized entropies of ρ on the

two quantum extremal surfaces χ
{ρ}
A and χ

{σ}
A . In either

case, we observe that if ρa
{σ} = σa, then (13) implies

S(ρA|σA) = 0, and thus ρA = σA. This is the result that
we will use in the proof below.

By symmetry, the results (13),(12) apply also for the
complement regions A and a, although for a mixed state
one must use S(ρa) rather than S(ρa) when extremizing
to find χA.7

At order N0 it is intuitively clear that (13) says that we
must be able to reconstruct in the entanglement wedge.
Relative entropy is a measure of the distinguishability of
two quantum states, so we can only have (13) if ρA, σA
have just as much information about the bulk as ρa, σa.
We now prove a theorem that makes this precise, and
extends it to higher orders in 1/N given the proposal of
[56].

A RECONSTRUCTION THEOREM

Theorem. Let H be a finite-dimensional Hilbert space,
H = HA ⊗HA be a tensor factorization, and Hcode be a
subspace of H. Let O be an operator that, together with
its hermitian conjugate, acts within Hcode. If for any
two pure states |φ〉, |ψ〉 ∈ Hcode, there exists a tensor
factorization Hcode = Ha ⊗Ha such that O acts only on
Ha, and the reduced density matrices

ρA ≡ TrA|φ〉〈φ| , σA ≡ TrA|ψ〉〈ψ| ,
ρa ≡ Tra|φ〉〈φ| , σa ≡ Tra|ψ〉〈ψ| (14)

satisfy

ρa = σa ⇒ ρA = σA , (15)

then both of the following statements are true:

1. For any XA acting on HA and any state |φ〉 ∈
Hcode, we have

〈φ|[O,XA]|φ〉 = 0 . (16)

2. There exists an operator OA acting just on HA such
that OA and O have the same action on Hcode, i.e.

OA|φ〉 = O|φ〉 , O†A|φ〉 = O†|φ〉 , (17)

6 This equivalence is complicated by gravitons, which are metric
variations of order

√
G and thus can produce second-order varia-

tions of order N0. These can be dispensed with by introducing a
gauge (e.g. the one in [29]) where the quantum extremal surface
χA does not move until order N0.

7 In this case, we expect that the two entanglement wedges can
never overlap.

for any state |φ〉 ∈ Hcode.

Proof. First we note that the two statements are guaran-
teed to be equivalent by the theorem proved in Appendix
B of [24]; for the convenience of the reader we sketch the
logic of that proof in an appendix below. Therefore we
will only need to prove the first statement. Furthermore
it is sufficient to prove the theorem when O is a hermitian
operator which we assume now.8

Consider any state |φ〉 ∈ Hcode, and let λ be an arbi-
trary real number. For the two states |φ〉 and

|ψ〉 ≡ eiλO|φ〉 (18)

which are both in Hcode, the assumption of the theorem
guarantees the existence of a tensor factorizationHcode =
Ha ⊗Ha such that O acts only on Ha, which implies

ρa = σa (19)

because the two states only differ by the action of a uni-
tary operator eiλO on Ha. Using (15) we find

ρA = σA ⇒ 〈ψ|XA|ψ〉 = 〈φ|XA|φ〉 . (20)

Using (18) we may rewrite (20) as

〈φ|e−iλOXAe
iλO|φ〉 − 〈φ|XA|φ〉 = 0 . (21)

Expanding this equation to linear order in λ, we find

〈φ|[O,XA]|φ〉 = 0 , (22)

which proves (16), and hence also (17).

In the above theorem we assumed that H is finite-
dimensional to avoid any subtleties with the proof of Ap-
pendix B of [24]. In AdS/CFT we can accomplish this
by introducing a UV cutoff in the CFT. This only affects
physics near the asymptotic boundary of AdS, and there-
fore is not essential to our discussion. In bulk language
the assumptions for the theorem follow from picking an
O that lies in the entanglement wedge EA for any state in
Hcode, with the choice of factorization coming from the
quantum extremal surface for the state |φ〉. This ensures
that we can apply eq. (13) for the complement region A,
which then implies (15).

DISCUSSION

We view the theorem of the previous section as estab-
lishing the existence of entanglement wedge reconstruc-
tion. Several comments are in order:

8 To see this, we recall that any operator is a (complex) linear
combination of two hermitian operators.
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Our argument ultimately rests on the validity of the
quantum version (8) of the HRT formula, derived to order
N0 by [27], and conjecturally extended to higher orders
in 1/N by [56]. Understanding those results better is thus
clearly of interest for bulk reconstruction. Any discussion
of bulk reconstruction will ultimately be approximate, so
it would be interesting to prove an approximate version
of our theorem and use it to clarify the stability of our
results under small perturbations.

Note that our proof is constructive. After establishing
the assumptions of the theorem of Appendix B in [24]
hold, that theorem provides an explicit formula for the
reconstruction OA. Our construction is thus an improve-
ment on the HKLL procedure even within the causal
wedge, since the nonstandard Cauchy problem involved
in causal wedge reconstruction has only been solved in
special cases. However, it does not give much insight
into how to think about the reconstruction from a bulk
point of view. This is to be contrasted with the HKLL
algorithm, which (at least when it works) proceeds by
solving bulk equations of motion. We believe that a bulk
interpretation should exist, and finding it could be quite
illuminating.
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Appendix: Theorem of Operator Algebra Quantum
Error Correction

In this appendix, we give an intuitive summary of the
derivation of the theorem establishing the equivalence be-
tween (16) and (17). More details can be found in the
full proof provided in Appendix B of [24].

Suppose thatHcode is spanned by an orthonormal basis

|i〉AA. Consider the state

|Φ〉 =
∑
i

|i〉R ⊗ |i〉AA , (23)

where R is a reference system whose Hilbert space is
spanned by an orthonormal basis |i〉R. Using (23) we may
mirror any operator O acting withinHcode to an operator
OR on R such that O|Φ〉 = OR|Φ〉, O†|Φ〉 = O†R|Φ〉.

The task is then to instead view OR as OR ⊗ IA and
mirror it back to an operator OA on A. To do this we
need the Schmidt decomposition

|Φ〉 =
∑
α

cα|α〉A ⊗ |α〉RA , (24)

where the states |α〉RA with cα 6= 0 generally span a
subspace of HR ⊗HA. We can mirror OR ⊗ IA onto A if
it acts within this subspace which is guaranteed by

[OR ⊗ IA, ρRA(Φ)] = 0 . (25)

This statement is implied by (16). Therefore we obtain
(17).
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