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Quantum coherence and quantum entanglement represent two fundamental features of non-classical systems
that can each be characterized within an operational resource theory. In this paper, we unify the resource theories
of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent
operations and classical communication (LIOCC). Specifically we analyze the coherence and entanglement
trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum
coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone
that completely characterizes a state’s optimal rate of bipartite coherence distillation. This result allows us
to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and
local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have
distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-
known Horodecki criterion for distillability.

The ability for quantum systems to exist in “superposition
states” reveals the wave-like nature of matter and represents
a strong departure from classical physics. Systems in such
superposition states are often said to possess quantum coher-
ence. There has currently been much interest in constructing
a resource theory of quantum coherence [1–11], in part be-
cause of recent experimental and numerical findings that sug-
gest quantum coherence alone can enhance or impact physical
dynamics in biology [12–15], transport theory [2, 16, 17], and
thermodynamics [18–20].

In a standard resource-theoretic treatment of quantum co-
herence, the free (or “incoherent”) states are those that are di-
agonal in some fixed reference (or “incoherent”) basis Differ-
ent classes of allowed (or “incoherent”) operations have been
proposed in the literature [1, 3, 9–11] (see also [21, 22] for
comparative studies of these approaches), however an essen-
tial requirement is that the incoherent operations act invari-
antly on the set of diagonal density matrices. Incoherent op-
erations can then be seen as one of the most basic generaliza-
tions of classical operations (i.e. stochastic maps) since their
action on diagonal states can always be simulated by classical
processing. Note also that most experimental setups will have
a natural basis to work in, and arbitrary unitary time evolu-
tions might be physically difficult to implement. In these set-
tings, there are practical advantages to identifying “diagonal
preserving” operations as being “free” relative to coherent-
generating ones.

One does not need to look far to find an important con-
nection between incoherent operations and quantum entangle-
ment, the latter being one of the most important resources in
quantum information processing [23]. Consider the task of
entanglement generation. This procedure is usually modeled
by bringing together two or more quantum systems initially
in a product state ρ ⊗σ and then applying an entangling joint
operation. However, using only incoherent operations, this
will not be possible unless either ρ or σ already possesses
coherence. The reason is that when ρ ⊗ σ is an incoherent

bipartite state, any incoherent operation acting on both sys-
tems will leave the joint state incoherent (and hence unentan-
gled). On the other hand, if the joint state is |+〉 |0〉, with
|±〉 =

√
1/2(|0〉 ± |1〉), then an application of CNOT yields

the entangled state
√

1/2(|00〉+ |11〉). This example reveals
that coherence, or at least coherent-generating operations, is a
pre-requisite for producing entanglement. In fact, as Streltsov
et al. have shown [24], every coherent state can be used for
the generation of entanglement in a manner similar to this ex-
ample.

Notice that the transformation |+〉 |0〉 →
√

1/2(|00〉 +
|11〉) requires performing an entanglement-generating inco-
herent operation. To capture both coherence and entangle-
ment in a common resource-theoretic framework, one must
modify the scenario by adopting the “distant lab” perspective
in which two or more parties share a quantum system but they
are spatially separated from one another [23, 25]. In this set-
ting, entanglement cannot be generated between the parties
and it becomes another resource in play. When the constraint
of locality is added to the incoherent framework, the allowable
operations for Alice and Bob are then local incoherent op-
erations and classical communication (LIOCC). The hybrid
coherence-entanglement theory described here is similar in
spirit to previous work on the locality-restricted resource the-
ories of purity [26–29] and asymmetry [30]. We do not point
to a specific biological or thermodynamic process as motiva-
tion for our study of LIOCC – although, one could envision
potential physical applications in certain coherence-enhanced
transport networks where the nodes interact through classical
signaling. Rather, we promote LIOCC as the natural setting
to explore the interplay between coherence and entanglement
as resource primitives in quantum information theory. For ex-
ample, how much local coherence and shared entanglement
do Alice (A) and Bob (B) need to prepare a particular bipartite
state ρAB using LIOCC (Fig. 1 (a))? Conversely, how much
coherence and entanglement can be distilled from a given state
ρAB using LIOCC (Fig. 1 (b))? The latter task can also be seen
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Figure 1. (a) An LIOCC formation protocol asymptotically gen-
erates an arbitrary state ρAB from an initial supply of local coherent
bits (ΦA/ΦB) and shared entanglement bits (ΦA′B′ ). (b) An LIOCC
dilution protocol performs the reverse transformation.

as type of collaborative randomness distillation, where Alice
and Bob work together to generate local sources of genuine
randomness for each other [6].

Our main results are the following. (1) We completely
characterize the achievable coherence-entanglement rate re-
gion for the task of asymptotically generating some pure state
|Ψ〉AB (Theorem 1). (2) We introduce a new LIOCC mono-
tone that combines both coherence and entanglement mea-
sures (Theorem 4), and we show it quantifies the optimal rate
in which Alice and Bob can simultaneously distill local co-
herence from a pure state. (3) We identify an achievable rate
region for the coherence-entanglement distillation of a pure
state and show optimality at almost all corner points (Theo-
rem 5). (4) In analogy to Refs. [26–29], we introduce and
compute for pure states the nonlocal coherence deficit and the
LIOCC coherence deficit (Eqns. (8)–(9)). (5) We show that
LIOCC operations alone are sufficient to decide whether en-
tanglement can be distilled from a mixed state using general
LOCC.

Let us begin by briefly describing the theory of bipartite
coherence in more detail. Assigned to both Alice and Bob’s
system is a particular basis called their incoherent basis. We
denote Alice’s incoherent basis by {|x〉A}dA−1

x=0 and Bob’s inco-
herent basis by {|y〉B}dB−1

y=0 so that the incoherent basis for their

joint systemHA ⊗HB is {|x〉A |y〉B}dA−1,dB−1
x,y=0 . Then any bipar-

tite state belongs to the set of incoherent states I iff it has the
form

σAB =
∑
xy

pxy|x〉〈x|A ⊗ |y〉〈y|B. (1)

Following the framework of Baumgratz et al. [3], a lo-
cal incoherent operation for Alice is given by a complete
set of Kraus operators {Kα}α such that (Kα ⊗ IB)ρAB(Kα ⊗

IB)†/tr[KαK†α ⊗ IBρAB] ∈ I for all ρAB ∈ I. If ever she in-
troduces a local ancilla system HA′ , the incoherent basis for
this additional system is labeled in the same way {|x〉A

′

}
dA′−1
x=0 .

Analogous statements characterize the notion of incoherent

operations on Bob’s system. In the LIOCC setting, Alice and
Bob take turns performing local incoherent operations and
sharing their measurement data over a classical communica-
tion channel.

The canonical resource states in the bipartite LIOCC frame-
work are the maximally coherent bits (CoBits), |ΦA〉 :=√

1/2(|0〉A + |1〉A) and |ΦB〉 :=
√

1/2(|0〉B + |1〉B) for Al-
ice and Bob’s systems respectively [3], as well as the entan-
gled state |ΦAB〉 :=

√
1/2(|00〉+ |11〉), which we will call

the maximally coherent entangled bit (eCoBit). Notice that
unlike entanglement theory, only those bipartite states related
to |ΦAB〉 by an incoherent local unitary transformation can be
regarded as equivalent to |ΦAB〉. For example, as we will see
below, one eCoBit cannot be incoherently transformed into
the state

√
1/2(|0+〉+ |1−〉), even asymptotically.

We now describe the primary tasks studied in this paper,
which can be seen as the resource-theoretic tasks recently an-
alyzed by Winter and Yang in Ref. [7] but now with additional
locality constraints. All of the detailed proofs can be found in
the Supplemental Material [31], which also contain Refs. [32–
46], and here we just present the results. Let us begin with the
problem of asymptotic state formation shown in Fig. 1 (a). A
triple (RA, RB, Eco) is an achievable coherence-entanglement
formation triple for the state ρAB if for every ε > 0 there exists
an LIOCC operation L and integer n such that

L

(
Φ⊗dn(RA+ε)e

A ⊗Φ⊗dn(RB+ε)e
B ⊗Φ⊗dn(E

co+ε)e
A′B′

)
ε
≈ ρ⊗n.

Dual to the task of formation is resource distillation, as de-
picted in Fig. 1 (b). A triple (RA, RB, Eco) is an achievable
coherence-entanglement distillation triple for ρAB if for every
ε > 0 there exists an LIOCC operation L and integer n such
that

L(ρ⊗n)
ε
≈ Φ⊗bn(RA−ε)c

A ⊗Φ⊗bn(RB−ε)c
B ⊗Φ⊗bn(E

co−ε)c
AB .

As we are dealing with asymptotic transformations, we should
expect the optimal rate triples to be given by entropic quan-
tities. Recall that for a bipartite state ωAB, the von Neu-
mann entropy of, say, Alice’s reduced state ωA is given by
S (A)ω = −tr[ωA logωA]. The quantum mutual information
of ωAB takes the form I(A : B)ω := S (A)ω − S (A|B)ω,
where S (A|B)ω := S (AB)ω − S (B)ω. For a pure state |Ψ〉AB,
the entropy of entanglement E(Ψ) := S (A)Ψ = S (B)Ψ is
the unique measure of entanglement in the asymptotic regime
[47], and it can be generalized to mixed states as the en-
tanglement of formation EF(ρ) [48]. We will also be in-
terested in these entropic quantities after sending our state
ωAB through the completely dephasing channel, ∆(ω) :=∑

xy |xy〉〈xy|ω|xy〉〈xy|. It will be convenient to think of ∆(ω)
as encoding random variables XY having joint distribution
p(x, y) = 〈xy|∆(ω) |xy〉. For this reason, we follow stan-
dard convention and replace the labels (A, B)→ (X, Y) when
discussing a dephased state.

Our first main result completely characterizes the achiev-
able rate region for the LIOCC formation of bipartite pure
states.
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Theorem 1. For a pure state |Ψ〉AB the following triples are
achievable coherence-entanglement formation rates

(RA, RB, Eco) =
(

0, S (Y |X)∆(Ψ) , S (X)∆(Ψ)

)
(2)

(RA, RB, Eco) =
(
S (X)∆(Ψ), S (Y |X)∆(Ψ), E(Ψ)

)
(3)

(RA, RB, Eco) =
(
0, 0, S (XY)∆(Ψ)

)
(4)

as well as the points obtained by interchanging A ↔ B in
Eqns. (2) – (4). Moreover, these points are optimal in the sense
that any achievable rate triple must satisfy (i) Eco ≥ E(Ψ), (ii)
RA + RB ≥ S (XY)∆(Ψ), (iii) RB + Eco ≥ S (XY)∆(Ψ).

For a mixed state ρAB, a formation protocol can be con-
structed that achieves the average rates for any ensemble
{pk, |ϕk〉

AB} such that ρ =
∑

k pk |ϕk〉〈ϕk | [48]. For instance,
one can consider an ensemble whose average bipartite coher-
ence attains the coherence of formation CF for ρ; i.e. it is an
ensemble {pk, |ϕk〉

AB} for ρ that minimizes
∑

k pkS (XY)∆(ϕk)
[6, 7]. Then for a mixed state ρ, the coherence rate sum
RA + RB of Eq. (3) can attain the coherence of formation
CF(ρ). In the global setting where Alice and Bob are al-
lowed to perform joint operations across system AB, it has
been shown that CF(ρ) quantifies the optimal coherence con-
sumption rate for generating ρ using global incoherent opera-
tions [7]. Our result then intuitively says that in the restricted
LIOCC setting, the same coherence rate is sufficient to gen-
erate ρ, however they now need additional entanglement at a
rate

∑
k pkE(ϕk), where the ensemble {pk, |ϕk〉

AB} minimizes
the average coherence of ρ.

The proof of Theorem 1 uses two lemmas that may be of
independent interest. The first generalizes a result presented in
Ref. [3], and the second is an incoherent version of Nielsen’s
Majorization Theorem [49].

Lemma 2. An arbitrary d × d unitary operator U can be per-
formed on a system using incoherent operations and dlog de
CoBits.

Lemma 3. Suppose |ψ〉AB and |φ〉AB have reduced density ma-
trices that are diagonal in the incoherent bases for both par-
ties and both states. Then |ψ〉 → |φ〉 by LIOCC iff the squared
Schmidt coefficients of |φ〉 majorize those of |ψ〉.

Next, we introduce a new LIOCC monotone and provide
its operational interpretation. To do so, we recall the recently
studied task of assisted coherence distillation, which involves
one party helping another distill as much coherence as pos-
sible through general quantum operations performed on the
helper side and incoherent operations performed on the dis-
tillation side [50]. For a given state ρAB, the optimal asymp-
totic rate of coherence distillation on Bob’s side when Alice
helps is denoted by CA|B

a (ρAB). When the roles are switched,
the optimal asymptotic rate is denoted by CB|A

a (ρAB). It
was shown in Ref. [50] that CA|B

a (ρAB) = S (Y)∆(Ψ) and

CB|A
a (ρAB) = S (X)∆(Ψ). With these quantities in hand, we

define for a bipartite pure state |Ψ〉AB the function

CL(Ψ) := CA|B
a (Ψ) +CB|A

a (Ψ) − E(Ψ)

= S (X)∆(Ψ) + S (Y)∆(Ψ) − E(Ψ). (5)

Its extension to mixed states can be defined by a convex roof
optimization [45]: CL(ρAB) = inf

{pk ,|ϕk〉
AB}

∑
k pkCL(ϕAB

k )

for which ρAB =
∑

k pk |ϕk〉〈ϕk |.

Theorem 4. The function CL is an LIOCC monotone.

We note that this is the first monotone of its kind since it be-
haves monotonically under LIOCC, but not general LOCC or
even under LQICC, the latter being an operational class in
which only one of the parties is required to perform incoher-
ent operations (as opposed to LIOCC where both parties must
perform incoherent operations) [50].

Using the monotonicity of CL, we are able to derive tight
upper bounds on coherence distillation rates.

Theorem 5. For a pure state |Ψ〉AB the following triples are
achievable coherence-entanglement distillation rates

(RA, RB, Eco) =
(
S (X)∆(Ψ) − E(Ψ), S (Y)∆(Ψ), 0

)
(6)

(RA, RB, Eco) =
(
0, S (Y |X)∆(Ψ), I(X : Y)∆(Ψ)

)
, (7)

as well as the points obtained by interchanging A ↔ B
in Eqn. (6) and (7). Moreover, these points are optimal
in the sense that any achievable rate triple must satisfy (i)
RA + RB ≤ CL(Ψ) and (ii) RB + Eco ≤ S (Y)∆(Ψ).

This theorem endows CL with the operational meaning of
quantifying how much local coherence can be simultaneously
distilled from a pure state. For a state |Ψ〉 the maximum that
Alice can help Bob distill coherence is CA|B

a while the maxi-
mum that Bob can help Alice is CB|A

a . Evidently, they cannot
both simultaneously help each other at these optimal rates. In-
stead, they are bounded away from simultaneous optimality at
a rate equaling their shared entanglement.

It is still unknown the precise range of achievable distilla-
tion triples (RA, RB, Eco

max), where Eco
max is the maximum eCo-

Bit distillation rate. While we are able to prove that Eco
max is

the regularized version of I(X : Y)∆(Ψ) optimized over all LI-
OCC protocols, we have no single-letter expression for this
rate nor do we know the achievable local coherence rates for
optimal protocols.

A natural question is whether Eco
max(Ψ) = E(Ψ). While

this question remains open, we can show that E(Ψ) is achiev-
able if the Schmidt basis of the final state need not be inco-
herent. More precisely, we say a number R is an achievable
LIOCC entanglement distillation rate if for every ε > 0, there
exists an LIOCC protocol L acting on n copies of Ψ such that
L(Ψ⊗n)

ε
≈ Λd, where Λd is a d ⊗ d maximally entangled pure

state (i.e. ΛA = ΛB = I/d) with 1
n log d > R− ε. The largest

achievable distillation rate will be denoted by ELIOCC
D (Ψ).

Theorem 6. ELIOCC
D (Ψ) = E(Ψ).
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It is interesting to compare the coherence distillation rates
using incoherent operations under different types of local-
ity constraints. In Refs. [26–29], similar comparisons were
made in terms of purity (or work-information) extraction.
Let CGlobal

D , CLIOCC
D , and CLIO

D denote the optimal rate sum
RA + RB of local coherence distillation using global inco-
herent operations, LIOCC, and local incoherent operations
(with no classical communication), respectively. In com-
plete analogy to [26–29], we define the nonlocal coherence
deficit of a bipartite state ρAB as δ(ρAB) = CGlobal

D (ρAB) −

CLIOCC
D (ρAB) and the LIOCC coherence deficit as δc(ρAB) =

CLIOCC
D (ρAB) − CLIO

D (ρAB). Intuitively, the quantity δ(ρAB)
quantifies the coherence in a state that can only be accessed
using nonlocal incoherent operations. Likewise, δc(ρAB)
gives the coherence in ρAB that requires classical communi-
cation to be obtained. The results of Winter and Yang imply
that CGlobal

D (Ψ) = S (XY)∆(Ψ) and CLIO
D (Ψ) = S (X)∆(Ψ) +

S (Y)∆(Ψ) − 2E(Ψ) for a bipartite pure state |Ψ〉AB [51]. Com-
bined with Theorem 5, we can compute the two coherence
deficits for pure states:

δ(Ψ) = E(Ψ) − I(X : Y)∆(Ψ) (8)

δc(Ψ) = E(Ψ). (9)

It is curious that the entanglement E(Ψ) quantifies the coher-
ence gain unlocked by classical communication. But note that
a similar phenomenon exists in the resource theory of purity.
Namely, the quantum deficit δ(Ψ) and classical deficit δc(Ψ)
measure the analogous differences in local purity distillation
by so-called “closed operations” (CO), and they are given by
δ(Ψ) = δc(Ψ) = E(Ψ) [26, 27]. For the task of distilling Co-
Bits, every protocol using incoherent operations can be seen
as one using closed operations by accounting for all ancilla
systems at the start of protocol [52]. However, closed opera-
tions allow for arbitrary unitary rotations, which are forbidden
in coherence theory. The term I(X : Y)∆(Ψ) in δ(Ψ) identifies
precisely the basis dependence in coherence theory and shows
how this decreases δ(Ψ) relative to δ(Ψ). On the other hand,
there is evidently no basis dependency in the LIOCC classical
deficit δc(Ψ) and it is equivalent to δc(Ψ).

Although our distillation results so far have only applied to
pure states, we can deduce a very general result concerning
the distillability of mixed states.

Theorem 7. A mixed state ρAB has (LOCC) distillable en-
tanglement if and only if entanglement can be distilled using
LIOCC.

The proof of this theorem is actually quite simple and uses
the fact that an arbitrary quantum operation can be simu-
lated using incoherent operations and CoBits (Lemma 2). In
Ref. [50] it was shown how local coherence can always be
distilled for both Alice and Bob from multiple copies of every
entangled states using LIOCC. Hence for a sufficiently large
number of any distillable entangled state ρAB, Alice and Bob
first distill sufficient local coherence using LIOCC, and then
they simulate the LOCC protocol which distills entanglement.

As shown in Ref. [53], a state ρ has distillable entanglement
iff for some k there exists rank two operators A and B such that
the (unnormalized) state A⊗ Bρ⊗kA⊗ B is entangled. By The-
orem 5 and following the same argumentation of Ref. [53],
we can further require that the A and B are incoherent oper-
ators; that is, they have the form A = |0〉〈α0|+ |1〉〈α1| and
B = |0〉〈β0|+ |1〉〈β1| where ∆(α0) := ∆(|α0〉〈α0|) is orthog-
onal to ∆(α1) := ∆(|α1〉〈α1|), and likewise for ∆(β0) :=
∆(|β0〉〈β0|) for ∆(β1) := ∆(|β1〉〈β1|). We are thus able to
add an additional condition to the distinguishability criterion
of Ref. [53].

Corollary 8. A bipartite state ρ has distillable entanglement
iff for any pair of orthonormal local bases BA = {|x〉A}
and BB = {|y〉B} there exists some k and projectors PA =
|α0〉〈α0|+ |α1〉〈α1| and PB = |β0〉〈β0|+ |β1〉〈β1| such that

1. (PA ⊗ PB)ρ⊗k(PA ⊗ PB) is entangled,

2. tr[∆A(α0)∆A(α1)] = tr[∆B(β0)∆B(β1)] = 0,

where ∆Z is the completely dephasing map in the basis B⊗k
Z .

Conclusion: In this letter, we have investigated the relation-
ship between entanglement and coherence in the framework of
local incoherent operations and classical communication. The
findings of this study suggest that indeed entanglement and
coherence are closely linked resources. For instance, Theorem
5 shows that the entanglement of a state plays a crucial role in
limiting the amount of coherence that can be distilled from a
state, a result highly reminiscent of the complementarity be-
tween local and nonlocal information studied in Ref. [28]. In a
similar spirit, Theorem 7 shows that entanglement distillabil-
ity can be studied through the lens of coherence theory. This
latter result seems somewhat remarkable since despite coher-
ence being a basis-dependent resource, its resource-theoretic
analysis can be used to draw conclusions about entangle-
ment, a basis-independent resource. Future work will be con-
ducted to see whether the strengthened distillability criterion
of Corollary 8 can be useful in the long-standing search for
NPT bound entanglement.

Finally, we would like to comment on the particular type
of incoherent operations studied in this letter. As noted in the
introduction, there have been various proposals for the “free”
class of operations in a resource theory of coherence. This let-
ter has adopted the incoherent operations (IO) of Baumgratz
et al. [3], where each Kraus operator in a measurement just
needs to be incoherence-preserving. While the class IO has
drawbacks in terms of formulating a full physically consistent
resource theory of coherence [11, 21], it nevertheless seems
unlikely that the results of this letter would remain true if other
operational classes were considered. For example, the strictly
incoherent operations (SIO) proposed by Yadin et al. are un-
able to convert one eCoBit into a CoBit [11]. Thus, we believe
that the interesting connections between IO coherence theory
and entanglement demonstrated in this letter make a positive
case for why IO is important in quantum information theory,
independent of any other motivation. In fact, one could even
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put coherence aside and view LIOCC as just being a simpli-
fied subset of LOCC. As we have shown here, nontrivial con-
clusions about entanglement can indeed be drawn by studying
LOCC from “the inside.” This approach is somewhat dual to
the standard practice of studying LOCC using more general
separable operations (SEP), the chain of inclusions being LI-
OCC ⊂ LOCC ⊂ SEP. Interesting future work would be to
consider more general connections between coherence non-
generating and entanglement non-generating operations.

During preparation of this manuscript, we learned of work
by Streltsov and co-authors who have also initiated a study
into local incoherent operations and classical communication
[54].
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