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Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external
frequency reference. In order to sustain stable periodic motions, there needs to be external energy
supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlin-
earity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the
constituent resonator that determines the output frequency stays linear. Here we propose a new
self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit
the oscillation amplitude, while the feedback remains linear. We introduce a model to describe the
working principle of the self-sustained oscillations and validate it with experiments performed on a
nonlinear microelectromechanical (MEMS) based oscillator.

Autonomous oscillators are systems that can sponta-
neously commence and maintain stable periodic signals
in a self-sustained manner without external frequency
references. They are abundant both in Nature and in
manmade devices. In Nature made systems, the self-
sustained oscillators are the fundamental piece that de-
scribes systems as diverse as neurons, cardiac tissue, and
predator-prey relationships [1]. In manmade devices,
self-sustained autonomous oscillators are overwhelmingly
used for communications, timing, computation, and sens-
ing [2], with examples such as quartz watches [3] and
laser sources [4]. A typical oscillator consists of a res-
onating component and a sustaining feedback element:
the constituent resonator determines the oscillation fre-
quency, whereas the feedback system draws power from
an external source to compensate the energy loss due to
damping during each oscillation of the resonator [5]. In
order to initiate the oscillations, the initial gain of the
feedback must be larger than unity, so that energy accu-
mulates to build up oscillation amplitude [6]. However,
to avoid ever increasing oscillations, some limiting mech-
anism must act to ensure that, eventually, the vibrational
amplitude no longer grows.

In the conventional designs of oscillators, the resonat-
ing element is operated in the linear regime, where its
resonant frequency is independent of the excitation lev-
els, and the necessary amplitude limiting mechanism is
enacted in the feedback loop by introducing a nonlinear
element (Fig. 1a). However, maintaining the resonating
element in the linear regime has been challenging for a
variety of applications requiring self-sustained oscillators
made from micro-/nano-electromechanical (M/NEMS)
resonators [7-9], mostly because these resonators exhibit
significantly reduced linear dynamic range. To limit the
amplitude, common mechanisms include impulsive en-
ergy replenishment [5], saturated gain medium [4, 10] or
amplifiers [11, 12], automatic level control [13, 14], phase
locked loops [15, 16], nonlinear signal transduction [17],
and dedicated nonlinear components [18]. These mech-

anisms to incorporate nonlinear elements into the elec-
tronic feedback circuitry introduce technical challenges
in the analysis, design and implementation of the oscilla-
tors due to the significant impedance mismatch between
CMOS drivers and M/NEMS resonators [19].

In this Letter, we introduce and analyze a new oscil-
lator architecture that solely relies on the nonlinearity
originated from a micromechanical resonator, while all
components of the feedback circuitry stay within the lin-
ear regime (Fig. 1b). By capitalizing on the intrinsic
nonlinear dynamics of the mechanical resonator, it is pos-
sible to considerably simplify the design of the oscillator
while achieving a large degree of control and tunability.
Unlike the techniques used with linear resonators, the
oscillator architecture we are proposing can be readily
implemented in practically all M/NEMS geometries, as
the only requirement is the existence of a nonlinear re-
sponse. The proposed innovative architecture permits to
(1) initiate the oscillation spontaneously, (2) achieve sta-
ble oscillations through interplay between elastic nonlin-
earities and viscous damping, and (3) tune the oscillation
frequency over a wide range with readily accessible sys-
tem parameters. We demonstrate this new architecture
with an oscillator consisting of a clamped-clamped (c-
¢) silicon MEMS resonator [16] with high quality factor
(Q Z 10%), and with frequency tunability as large as 19
%.

We treat the mechanical resonator as a generic single
degree-of-freedom oscillating element, whose departure
from equilibrium is described by a coordinate x(t) obey-
ing [20]:

mi + (v + 2°)¢ + mwiz + fa® = F(w, &), (1)

where m is the effective mass, v and 7 are the linear
and nonlinear damping coefficients [21, 22], wy is the
natural frequency of linear oscillation, B is the cubic
(Duffing) nonlinear coefficient, and F(z,z) is the driv-
ing force from feedback. Since we only focus on periodic
solutions, quadratic nonlinearities are ignored. To facil-



itate the analysis, we define eq= = ~v/mwq, n = 7/4y,

B = 33/4mw8, and a fast time scale 7 = wgt. Here, the
small expansion parameter € is introduced for treatment
within a perturbation theory, as shown below. Since the
feedback force, F', is only needed to compensate the dis-
sipation, it will also be of the order of €. Furthermore,
we treat the feedback force as proportional to the vibra-
tional amplitude, corresponding to the cases where the
vibrational amplitude is linearly transduced and directly
measured experimentally. Similarly, the feedback force
can be treated as proportional to the vibrational veloc-
ity, if the velocity is the observed quantity as in the case
of capacitive motion transduction [23]. For simplicity,
here we consider the case of linear amplitude amplifica-
tion and scale the feedback force as F' = emwigr cos A,
where ¢ is the feedback gain and A the feedback loop
phase-delay. With these definitions, Eq. (1) becomes

4
i+ eq (1 +dna®)i + x + gﬁx?’ =egrcosA.  (2)

Here the time derivatives are calculated with respect to
T.

We represent the limit of small dissipation by taking
€ < 1, and the scaled quality factor g of the order of
unity. The solution to Eq. (2) can be found through
perturbation theory [24]. However, in contrast with pre-
vious treatments with weak nonlinearity [20], we do not
assume that the cubic force is small as compared to the
linear term [25]. The resulting zeroth-order equation is
therefore the nonlinear Duffing equation without damp-
ing: %9 + xg + %ﬂx% = 0. We propose a steady-state
solution of the form zg = Agcosy7, where Ay and
Qo are the oscillation amplitude and frequency of the
zeroth-order solution, respectively. By neglecting higher-
harmonics contributions, we find that Ag and €y must
satisfy the relation

1—Qf + BAj = 0. (3)

Following the method of multiple time-scales [23, 24],
we proceed to obtain the steady-state solution to Eq. (2)
up to O(e). This solution will be characterized by am-
plitude A and frequency w, determined both by intrin-
sic properties (8,7, ¢) and extrinsic parameters A, g [23].
Fig. 1c and 1d illustrate the relation between the steady-
state amplitude A and frequency w, for different values
of feedback excitations and A. For small excitations
(Fig. 1c), we recover the resonance curve as obtained
for weakly nonlinear resonators [20]. For large excitation
(Fig. 1d), where the oscillation frequency is pulled far
away from the linear resonance (w — 1 > ¢), the per-
turbed solution is practically identical to that of zeroth-
order equation Eq. (3). It is worth noting that, in the
case of our autonomous oscillator, both the amplitude
A and the frequency w are functions of the phase delay
A. Therefore, if multiple solutions of A exist for a given
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FIG. 1. (a) Schematics of the conventional oscillator design,
consisting of a linear resonator and nonlinear feedback. The
output of the resonator is first amplified, and then amplitude-
limited before being fed-back to the resonator. (b) Schemat-
ics of oscillator design with a nonlinear resonator and linear
feedback loop. The output of the resonator is amplified and
phase shifted, and then re-injected to the resonator. (c) Vi-
brational amplitude A (expressed as the ratio to the critical
amplitude A., above which multiple solutions exist) versus
frequency detuning in the limit of small drive, derived from
Eq. (2), with e = 107°, 8 = 1, = 0, and different levels
of excitation. The dashed backbone curve shows the solution
to Eq. (3). (d) Same results but with large excitation, where
the full solution practically coincides with the backbone. (e)
Phase portrait of amplitude A, showing unstable rest states,
and different stable equilibrium Aeq at various A. (f) Simu-
lated transient responses of A at different A.

value of w, all of them are stable [23, 26], as opposed to
an externally driven resonator where only two solutions
are stable. Moreover, nonlinearities make it possible to
achieve frequencies far above the linear oscillation fre-
quency, only bounded by other nonlinearities present in
the system, or by physical limits of the device.

For hardening nonlinearity (5 > 0), closer inspection of
the full solution reveals that the zero-amplitude state for
our system is unstable, as indicated by the phase portrait
shown in Fig. le: any disturbance will push the oscillator
away from rest state, towards the stable equilibrium A,



marked by the arrows in Fig. le. Physically, this stable
equilibrium can be understood as the energy balance be-
tween driving and damping: if the amplitude A increases
suddenly around A.q, (for instance, by noise), due to the
proportionality between the forcing and the amplitude
there is a growth in the input energy. At the same time,
because of the hardening nonlinearity, the increased am-
plitude pushes the oscillation frequency w upward, result-
ing in a larger energy dissipation due to viscous damping,
which is proportional to the product of Aw. The energy
balance is thus restored, and the oscillation amplitude
achieves a steady state (Fig. 1f). A symmetric argument
holds if the amplitude decreases. We have also examined
the case where the feedback force is proportional to ve-
locity, and arrived at similar conclusion [23]. In this case,
however, the balance is maintained by the effects of non-
linear damping, which becomes stronger as the oscillation
amplitude grows. This energy balance highlights the key
difference with previous oscillator topologies with a ded-
icated amplitude limiting element [12, 16, 18]. In the
current setup, intrinsic nonlinearities are an indispens-
able ingredient for stabilization. Additionally, the spon-
taneous oscillation greatly simplifies the startup protocol
of the oscillator, making it highly suitable for M/NEMS
based oscillators where very sensitive transducers are re-
quired to initiate the motion.

We used a MEMS based oscillator to experimentally
demonstrate these concepts. The resonator, similar to
the one used in [16], is placed in a vacuum chamber and
actuated electrostatically. The mechanical vibration cre-
ates a capacitive current in the sensing comb, that is
proportional to the velocity. Both of the comb electrodes
consist of 25 interdigitated fingers that allow efficient ex-
citation and linear signal transduction. The measured
linear resonance is 61.57 kHz, with linear damping rate
of 0.51 Hz [23]. The small dissipation of €' = Q ~
120,000 ensures that the resonator is well suited for the
designed nonlinear oscillator. In this case, the nonlinear-
ity is geometrical in origin and arises from the elonga-
tion of the beam during large transverse vibration. The
onset of nonlinearity x. - above which the amplitude-
frequency relation bifurcates - is calculated to be 17 nm
from the geometry of the device [8], and experimentally
found to be about 10 nm [23]. In the experiments, we
have observed oscillation amplitudes larger than 1 pm,
well above the linear threshold. We find excitations larger
than 100 pV are enough to drive the resonator into the
nonlinear regime. When the resonator is excited with an
even larger force, it displays the signature of nonlinear
damping [20, 23, 27, 28|.

The feedback loop consists of a transimpedance am-
plifier followed by a voltage amplifier and a band pass
filter. Therefore, the feedback force is proportional to
the velocity with a certain phase-delay. In order to en-
sure the linearity of the feedback loop, we have calibrated
the linearity of each component in the feedback circuity,
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FIG. 2. Steady-state response of a nonlinear oscillator. (a)
Measured power spectrum of the oscillation with different
feedback-phase-delay A. Measurement at each A is per-
formed with a time constant long enough to ensure the tran-
sient response has died out. The DC bias is 7 V. (b) Extracted
steady-state oscillation amplitude and frequency (red circles),
and fitting to Eq. (3), with 8 = 1.15 x 10"'m™2.

and found all of them operating in the linear regime [23].
Operating the electronics in the linear regime provides
a large range of operational voltages that allows for sig-
nificant detuning of the MEMS. Additionally, eliminating
complex controlling circuits for oscillators [29] greatly re-
duces the number of elements in the feedback loop, low-
ering the power consumption [30].

Figure 2a shows the steady-state power spectrum of
the oscillation, measured at different phase-delay A. For
A < 20°, no oscillation is observed, whereas for A > 20°,
the oscillations occur and the frequency grows monoton-
ically with A. This is consistent with the fact that, in
order to initiate spontaneous oscillations, the feedback
force should overcome damping. The onset of the os-
cillation frequency is about 61.5 kHz, slightly above the
linear resonance, and the highest oscillation frequency
observed is 73.15 kHz, which is about 19 % above the
linear resonance. We are hindered by the instrumental
limit from achieving larger phase-delay and frequency de-
tuning. The acquisition time of each spectrum is much
longer than the transient time of the oscillation, to ensure
steady-state conditions. The oscillation amplitude versus
frequency (Fig. 2b) clearly shows the quasi-square-root
dependency, as predicted by Eq. (3). The scaled Duff-
ing nonlinearity @, obtained from fitting to Eq. (3), is
1.15 x 10" m™~2, in good agreement with previous result
[31].

Next we consider the buildup of the oscillation. The
spontaneous initiation of the oscillating motion with lin-
ear feedback does not require the prerequisite of the
Barkhausen criterion [18]: after the amplified and phase-
shifted signal is fed back to actuate the resonator, the
system will asymptotically transition to the stable limit
cycle, whose frequency can be controlled by g and A
[23]. Fig. 3 shows the temporal evolution of the oscil-
lator during the startup: after the feedback is engaged
at t = 0 s, the envelope of oscillation amplitude, A,
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FIG. 3. Transient response during startup. (a) Measured
amplitude during oscillation buildup. The steady-state oscil-
lation frequency is 61.7 kHz, with A = 24.1°. (b) Zoomed-
in view of the steady-state oscillation of (a). The z-axis is
shifted arbitrarily. (c) Temporal frequency response of the
oscillation. The power spectrum at each nominal time ¢; is
obtained by performing non-overlapping fast Fourier trans-
form (FFT) of the time domain data in a narrow window
around ¢;. (d) The temporal evolution of the oscillator on the
amplitude-frequency plane, and fitting to Eq. (3) (black solid
line). The extracted § is 1.05 x 10''m™2. The DC bias is 7
V for all the data shown.

grows rapidly towards the final value (Fig. 3a). The
steady-state response shows stable sinusoidal oscillation,
as shown in Fig. 3b. The temporal frequency evolu-
tion shows a similar pattern (Fig. 3¢, corresponding to
the time domain data shown in Fig. 3a): the instanta-
neous frequency starts at the linear resonant frequency
value, and shifts upward towards the steady-state oscilla-
tion frequency. This temporal evolution is shown on the
amplitude-frequency plane (Fig. 3d), where we plot the
amplitude-frequency of the oscillator every 80 milisec-
onds. It can be clearly seen that the temporal response of
the oscillator follows the prescribed square-root interde-
pendence, Eq. (3), with an extracted 8 = 1.05x10m=2.
The inter-dependence between the vibrational amplitude
and frequency underlines the working principle of the
stable oscillation: any unintentional increase in ampli-
tude will increase the resonant frequency of the resonator,
which leads to more viscous damping, which in turn re-
duces the amplitude, hence maintaining the oscillations
stable.

Finally, we will examine the influence of the system
parameters on the oscillation buildup. We define the
startup time, fstartup, as the time needed for the oscil-
lation amplitude to reach 90% of its steady-state value.
We find that tgareup drops considerably with increasing
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FIG. 4. Control of oscillation startup. (a) Envelope of the
amplitude during startup, for different A, with @ = 120,000.
The envelope is obtained through averaging of multiple cy-
cles of the oscillation around given times. (b) Envelope of
the amplitude during startup, for different @Q, with A = 27°.
(¢, d) Corresponding startup time tstartup and steady-state
frequency extracted from (a) and (b), respectively. (e) The
startup time tsartup versus steady state frequency offset, col-
lected with different startup conditions. The dashed line is a
guide to the eyes with slope of —1.

the phase-delay A (Fig. 4a, c), which is consistent with
the theoretical modeling considering the feedback force
is proportional to g and A [23]. Additionally, we also
modify the effective gain g by changing the DC bias and
observe a similar dependence of tsartup [23].

To validate the model against intrinsic properties of
the resonator, we deliberately tune the linear damping
rate v by increasing the pressure of the vacuum cham-
ber, which changes the quality factor ). The values of
@ are obtained from separated open-loop resonator-type
measurements [23]. The startup time increases drasti-
cally when @ drops below ~ 30,000 (Fig. 4b, d), and we
failed to observe any oscillation for @) < 10, 000.

Since the only requirement for this oscillator topology
to work is to have the resonator in the nonlinear regime,
self-sustained oscillations can be achieved at low values
of @ by changing the dimensions of the resonator. The
onset of nonlinearity scales with the characteristic length
of the resonating element, and for NEMS devices, even
forces from thermal noise can drive the resonator into the



nonlinear regime [32].

The startup time, obtained from different system con-
figurations, is shown in Fig. 4e, and is found to be approx-
imately inversely proportional to the steady state fre-
quency offset. This observation highlights another bene-
fit of the new topology: the more nonlinear the response
is, the shorter the startup time. The nonlinear mechani-
cal resonator ensures stable oscillation, whose frequency
offset is proportional to the total feedback gain, whereas
the linear feedback allows for exponentially fast transient
towards the stable oscillation, which results in shorter
startup time with larger gain.

In summary, we have introduced a novel oscillator ar-
chitecture consisting of a nonlinear mechanical resonator
driven by a linear feedback loop. We have theoretically
examined the conditions for stable periodic motion and
have shown that when the feedback forcing is propor-
tional to the vibration amplitude, a hardening nonlinear
response ensures the balance between external energy in-
put and intrinsic dissipation necessary to stabilize oscil-
lations. The interplay between the resonator’s frequency
dependent amplitude and the associated damping under-
lines the principle of stable oscillations. When the feed-
back forcing is proportional to the oscillation velocity, in
turn, the balance is guaranteed by nonlinear damping.

As the size of the resonating elements shrinks to-
wards the nanoscale, the critical amplitudes for onset of
nonlinearity decreases accordingly [8, 33] and the res-
onators will inevitably operate in the mechanical non-
linear regime, even merely driven by thermal noise[32].
Since the mechanical nonlinearities of the resonator are
responsible for achieving self-sustained oscillations, the
new architecture should perform better when scaled
down to the nanoscale [34], making it ideal for oscillators
incorporating nanoscale resonators and for very large-
scale integration of high-QQ MEMS and NEMS.
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