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We show that NV centers in diamond interfaced with a suspended carbon nanotube carrying a dc
current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetome-
chanical interactions between a single NV spin and the vibrational mode of the suspended nanotube
can be engineered and dynamically tuned by external control over the system parameters. This
spin-nanomechanical setup with strong, intrinsic and tunable magnetomechanical couplings allows
for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures,
as well as phonon-mediated quantum information processing with spin qubits.

Carbon-based structures and devices are very com-
monly used in our everyday life and in state-of-the-art
science and technology. In quantum information sci-
ence, nitrogen-vacancy (NV) centers in diamond are out-
standing solid state qubits due to their long coherence
times and high controllability [1–5]. In nano-mechanics,
mechanical resonators made out of allotropes of carbon
(such as nanotubes [6–8], diamond [9–11], and graphene
[12]), are being extensively studied for fundamental re-
search and practical applications [13–23].

Recently, much attention has been paid to coupling NV
spins in diamond to mechanical resonators, which can be
achieved extrinsically [24–34] or intrinsically [35–39]. In
the first case, the interaction arises from the relative mo-
tion of the NV spin and a source of local magnetic field
gradients [24]. In such setups, a magnetic tip mounted
on a vibrating cantilever [40] is often used to generate
the magnetic coupling between an NV spin and the me-
chanical motion [24–34]. However, creating very strong,
well-controlled, local gradients remains challenging for
such setups, in particular when arrays of NV centers are
placed in close proximity to the same cantilever. Thus
far, experiments with the extrinsic coupling scheme have
yet to reach the strong-coupling regime [26–29]. In the
second case, the coupling of a diamond cantilever to the
spin of an embedded NV center is induced by crystal
strain during mechanical motion [35–39]. Unfortunately,
the strain-induced interaction between a single NV spin
and the cantilever quantized motion is inherently tiny
[37, 38], which makes the strong strain coupling at a sin-
gle quantum level very challenging.

In this Letter, we propose that NV centers in dia-
mond interfaced with carbon nanotubes can facilitate a
spin-nanomechanical hybrid device. This hybrid struc-
ture takes advantage of the unprecedented mechanical
and electrical characteristics of carbon nanotubes, as well
as the exceptional coherence properties of NV centers
in diamond. We demonstrate that the physics of an
NV center in diamond placed near a carbon nanotube
with a dc current flowing through it can be well mapped
to cavity quantum-electrodynamics (QED). In particu-

lar, going beyond earlier work in this field [24–39], we
show that the magnetomechanical interaction can be en-
gineered and dynamically tuned by external control of
the driving microwave fields and electric current through
the nanotube. The resulting coupling strength can be
roughly three orders of magnitude stronger than that for
cold atoms coupled to nanowires [16, 17]. An inherent
advantage of our NV-nanotube hybrid system is the in-
trinsic nature of the coupling. Thus no additional com-
ponents, such as external magnetic tips, are required to
tune the coupling. Another distinct feature of this in-
trinsic coupling scheme is that it is scalable to arrays of
NV centers in diamond. This spin-nanomechanical struc-
ture with strong intrinsic magnetomechanical couplings
would open up new avenues towards the design of hybrid
quantum devices [41] with NV centers and carbon-based
nanostructures. It also allows for quantum information
processing with NV spin qubits [42, 43], and could serve
as novel nanoscale sensors [44–48] in physical and life
science.

Model.– We consider a setup as shown in Fig. 1(a),
where the magnetic field of a current-carrying nanotube
is coupled to an NV center spin embedded in a nano-
diamond. The nanotube of length L is suspended along
the x axis at a distance d from the diamond nanocrys-
tal. When it vibrates, d varies by the nanotube’s effective
transverse displacement. In the following, we assume the
transverse displacement to be along the y direction, and
express it with the oscillator operator â of the funda-

FIG. 1. (Color online) (a) Schematic of a single NV center in
a diamond nanocrystal located near a current-carrying nan-
otube. (b) Level diagram of the driven NV center.
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mental oscillating mode, i.e., ûy = (~/2mωnt)
1/2(â+ â†),

where m is the effective mass of the nanotube, and ωnt

is the mechanical vibration frequency [49]. The mag-

netic field ~Bnt(~r) of the current-carrying nanotube at po-
sition ~r can be calculated by the Biot-Savart law. For a
long nanotube (L ≫ d), the magnetic field has the form
~Bnt(~r) = µ0I~ex×~r/2π|~r|2, in a reference frame with axes
as in Fig. 1. Here ~ex is the unit vector in the x direction,
and I is the electric current in the nanotube.
NV centers in diamond consist of a substitutional ni-

trogen atom and an adjacent vacancy, which have a
spin S = 1 ground state, with zero-field splitting D =
2π × 2.87 GHz, between the |ms = ±1〉 and |ms = 0〉
states. For moderate applied magnetic fields, static and
low frequency components of magnetic fields Bz cause
Zeeman shifts of states |ms = ±1〉, while external mi-

crowave fields with magnetic field ~Bdr drive Rabi oscilla-
tions between |ms = 0〉 and the excited states |ms = ±1〉,
as shown in Fig. 1(b). For convenience, we denote as the
z axis the crystalline axis of the NV center.
The interaction of a single NV center located at ~r with

the total magnetic field (external driving and from the
nanotube) can be written as ĤNV = ~DŜ2

z+µBgs BzŜz+

µBgs( ~Bnt(~r) + ~Bdr) · ~̂S with gs = 2 the Landé fac-

tor of the NV center, µB the Bohr magneton, and ~̂S
the spin operator of the NV center. We consider us-
ing a single microwave field polarized in the x direction,
~Bdr = B0 cosω0t~ex, and place the NV center in the posi-
tion where the magnetic field of the nanotube is in the z
direction, ~Bnt = Bnt~ez. The magnetic field ~Bnt(~r) felt by
the NV center is modulated by the nanotube’s vibration.
Expanding the magnetic field ~Bnt(~r) up to first order in
ûy, we have ĤNV = ~DŜ2

z + µBgs[ Bz + Bnt(d)]Ŝz +

µBgs ~Bdr · ~̂S + µBgsŜz∂yBntûy.
We define ~∆± = ~D ± µBgs(Bz + Bnt) − ~ω0, ~Ω =√
2
4
µBgsB0, and restrict the following discussion to sym-

metric detunings, ∆+ = ∆− = ∆. When |∆| ≫ Ω, we
obtain the effective Hamiltonian [49]

Ĥq = ~ωntâ
†â+

1

2
~Λσ̂z + ~g(σ̂+ + σ̂−)(â

† + â). (1)

Here, Λ = 2Ω2/∆, ~g = µBgs(~/2mωnt)
1/2∂yBnt, and we

switch to the new basis {|B〉 = 1√
2
(|+ 1〉+ | − 1〉), |D〉 =

1√
2
(| + 1〉 − | − 1〉)}, with σ̂z = |B〉〈B| − |D〉〈D|, σ̂+ =

|B〉〈D|, and σ̂− = |D〉〈B|. The states |B〉 and |D〉 are
often referred to bright and dark states for NV spins [24,
57]. If we choose Λ ≃ ωnt, then, under the rotating-wave
approximation we obtain the standard Jaynes-Cummings
(JC) Hamiltonian

ĤJC = ~ωntâ
†â+

1

2
~Λσ̂z + ~g(σ̂+â+ σ̂−â

†). (2)

However, if we choose Λ ≃ −ωnt, which can be controlled
by the parameters ∆ and Ω, we obtain the Anti-Jaynes-

Cummings (AJC) Hamiltonian

ĤAJC = ~ωntâ
†â+

1

2
~Λσ̂z + ~g(σ̂+â

† + σ̂−â). (3)

Thus, our system mimics the standard model in cavity
QED of a single atom coupled to a single cavity mode.
The type of interactions can be designed by external con-
trol over the driving fields. This mapping allows the pow-
erful toolbox of cavity QED to be transferred to these
systems.

Two proposed experimental setups.– We consider two
different designs for coupling an NV spin to a current-
carrying carbon nanotube resonator. Fig. 2 (a) displays a
nanotube, carrying a dc current, suspended above a bulk
single crystal diamond sample. Individual, optically-
resolvable NV centers are implanted 5 − 10 nm below
the surface of the diamond sample [27, 58]. Fig. 2 (b)
shows another feasible design, where a diamond nanopar-
ticle hosting a single NV center is closely placed near the
nanotube. Diamond nanoparticles can have a size of less
than 10 nanometers, and only host one NV defect [26].
The spin states of NV centers can be controlled and ma-
nipulated by microwaves from external microwave anten-
nas. A confocal microscope can be used to excite and
polarize the NV spin, and detect photoluminescence to
read out the NV spin polarization.

Carbon nanotubes can possess current-carrying capac-
ities exceeding 10 µA/nm2 [59–64], with lengths which
can range from tens of nanometers to tens of microme-
ters. In experiments, the carbon nanotube could be actu-
ated and deflected electrostatically over several nanome-
ters with AC and DC voltages applied to the gate elec-
trodes. Thus, the distance between the nanotube and the
NV center can be fine-tuned electrostatically. A recent
experiment [23], has reported a device with a graphene
membrane suspended some 10−50 nm above a single NV
center.

To evaluate the single spin-phonon coupling strength
g, we use the magnetic field generated by an infinite long
tube, as given by the Biot-Savart law. In this case, it

FIG. 2. (Color online) Schematic of the nanotube-NV hybrid
setup. (a) A current-carrying nanotube is suspended above a
diamond sample, in which individual optically-resolvable NV
centers are implanted 5−10 nm below its surface. (b) A single
NV defect hosted in a diamond nanocrystal with a size about
10 nm is positioned near the nanotube.
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FIG. 3. (Color online) Single spin-phonon coupling strength
versus the distance between the NV center and the nanotube.
The relevant parameters here are r ≃ 1.5 nm, t ≃ 0.335 nm,
I ≃ 60 µA. In the inset the coupling strength versus the
length of the nanotube.

reads

g =
µBgsµ0I

2π
√
2~mωntd2

. (4)

This magnetomechanical coupling strength depends on
the the dimensions of the nanotube and the distance d,
as well as the current I flowing through the nanotube.
Thus, it can be easily tuned by control of the system
parameters.
We consider a carbon nanotube of length L ∼ 2 µm,

radius r ∼ 1.5 nm, and wall thickness t ∼ 0.335 nm,
suspended at a distance d ∼ 30 nm from the NV cen-
ter [49]. The tube carries a dc current I ∼ 60 µA, and
vibrates at a frequency ωnt/2π ∼ 2 MHz, with effective
mass m ∼ 7 × 10−21 kg [49]. With the above given pa-
rameters, one can obtain g/2π ∼ 10 kHz. By changing
the distance d and the dimensions of the nanotube, as
well as the current I flowing through the nanotube, the
coupling strength g can be further adjusted (see Fig. 3).
For a much closer distance d ∼ 10 nm, the magnetome-
chanical coupling strength can even reach g/2π ∼ 100
kHz. This coupling strength is comparable to that of a
single NV spin coupled to a vibrating cantilever with a
strong local magnet [24, 25] or a superconducting circuit
[65–70], and is about a factor of 1000 larger than the
coupling achieved with cold atoms [16, 17].
Dephasing and dissipation.– In realistic situations, we

need to consider spin dephasing and mechanical dissipa-
tion. The full dynamics of our system that takes these in-
coherent processes into account is described by the mas-
ter equation

dρ̂(t)

dt
= − i

~
[ĤJC, ρ̂] + γsD[σ̂z ]ρ̂

+nthγmD[â†]ρ̂+ (nth + 1)γmD[â]ρ̂ (5)

with D[ô]ρ̂ = ôρ̂ô† − 1
2
ô†ôρ̂ − 1

2
ρ̂ô†ô for a given oper-

ator ô. The strong coupling regime can be reached if
the coherent coupling strength g exceeds both the elec-
tronic spin decay rate γs and the intrinsic damping rate
of the mechanical mode γm, i.e., g > {γs, nthγm}, with

nth = (e~ωnt/kBT − 1)−1 the thermal phonon number at
the environment temperature T . For a mechanical res-
onator with frequency ωm and quality factor Q, the me-
chanical damping rate is γm = ωm/Q. The recent fabri-
cation of carbon nanotube resonators can possess quality
factors exceeding 105 [8]. Together with the oscillator
frequency ωnt/2π ∼ 2 MHz [49], this value of Q implies
an oscillator damping rate γm/2π ∼ 20 Hz, and would
translate into phonon mean free path lc ∼ QL ∼ 10 cm
[49]. Assuming an environmental temperature T ∼ 10
mK in a dilution refrigerator, the thermal phonon num-
ber is about nth ∼ 100. Therefore, we obtain g > nthγm.
When it comes to the NV center, the dephasing time
T2 can be increased to several milliseconds in ultrapure
diamond [71], leading to a dephasing rate γs/2π ∼ 1
kHz. We can ignore single spin relaxation, as T1 can
be several minutes at low temperatures. Therefore, the
strong-coupling regime can be reached in this setup, i.e.,
g > {γs, nthγm}.
The strong-coupling regime described by the Hamil-

tonian (2) enables coherent quantum state transfer be-
tween the spin and the resonator. Moreover, in combina-
tion with optical pumping and detection techniques for
spin qubits, this would provide the basic ingredients for
detecting and manipulating quantum states of the nan-
otube resonator.

In Fig. 4, we show the numerical simulations of quan-
tum dynamics of the coupled system through solving the
master equation (5). As the initial state, we take the
product state of the NV spin and the mechanical res-
onator with the occupation number nm = 0.2, e.g., as
a result of side-band cooling [72, 73]. In the time do-
main, vacuum Rabi oscillations are a direct evidence of
the coherent energy exchange between the spin qubit and
the resonator phonon mode. We obtain numerical results
for the time evolution of the mean phonon number and
the probability for the NV center being in the excited
state. We find that vacuum Rabi oscillations can occur
for these parameters. In such a process, the spin state
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FIG. 4. (Color online) (a) Vacuum Rabi oscillations of an
NV spin coupled to a nanotube mechanical resonator without
dissipations. The initial state of the NV spin is |B〉. (b) Same
as (a) but with dissipations for the spin and the mechanical
resonator. The relevant parameters here are chosen as nth ∼
100, γm ∼ 10−3g, and γs ∼ 0.1g.
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can be transferred from the NV center to the nanotube
resonator, and vice versa.
Elementary quantum information.– The magnetome-

chanical interaction allows us to use the nanotube vibra-
tion mode as a quantum bus to perform more complex
tasks. Controlled spin-spin couplings could be realized
for two distant NV centers separated by micrometer dis-
tances. Based on these effective interactions, we now
explore the possibility of implementing quantum infor-
mation processing with spin qubits.
We consider two separated NV centers coupled to the

same vibration mode of the nanotube in the dispersive
regime |Λ − ωnt| ≫ g. This will lead to an effective
long range spin-spin interaction via the exchange of vir-
tual phonons [49], Ĥs-s = ~λeff(σ̂

1
+σ̂

2
− + σ̂1

−σ̂
2
+), with

the coupling strength λeff = g2/|Λ − ωnt|. The coher-
ence length of the phonon mediated NV spin coupling
is about lc ∼ QL [49], which can be much larger than
the distance between two NV spins separated by a dis-
tance on the order of the nanotube’s length. If we choose
|Λ−ωnt|/2π ∼ 1 MHz, and g/2π ∼ 100 kHz, then we can
obtain the spin-spin coupling strength λeff/2π ∼ 10 kHz.
This strong spin-spin interaction allows for the imple-
mentation of a SWAP gate and quantum states transfer
between two NV centers.
In the following, we encode the jth logical qubit in the

two spin states of the jth NV center, i.e., |0〉jq = |0〉j and

|1〉jq = |D〉j . Such qubit encoding has proven to be more
robust against low-frequency magnetic-field noise [57].
Our main task is to realize a SWAP gate and quantum
information transfer between two qubits. To implement
this protocol, we need a microwave to drive the transition
between the qubit state |0〉j and the bright state |B〉j in
each qubit with Rabi frequency Ωj and frequency detun-
ing δj . The dynamics of the entire system is described

by Ĥ =
∑

j ~δj |B〉jj〈B|+
∑

j [~Ωj|B〉jj〈0|+H.c.] + Ĥs-s.
The spin-spin interaction can be diagonalized with the
states |±〉q = 1/

√
2[|B〉1|D〉2 ± |D〉1|B〉2]. It is easy

to show that in the subspace defined by {|0, 1〉q ≡
|0〉1q|1〉2q, |+〉q, |−〉q, |1, 0〉q ≡ |1〉1q|0〉2q}, the system Hamil-
tonian has the form [49]

Ĥ = ~δ+|+〉qq〈+| − ~δ−|−〉qq〈−|+ ~Ω̄1|+〉qq〈0, 1|
+~Ω̄1|−〉qq〈0, 1|+ ~Ω̄2|+〉qq〈1, 0|
−~Ω̄2|−〉qq〈1, 0|+H.c. (6)

with δ+ = λeff + δ1+δ2
2

, δ− = λeff − δ1+δ2
2

, Ω̄j =

Ωj/
√
2, j = 1, 2. Thus we can find that if the two qubits

are initially prepared in the state |0〉1q|1〉2q or |1〉1q|0〉2q,
then the dynamics of the system will be confined in the
subspace governed by the Hamiltonian (6). In Fig. 5
we present detailed numerical simulations for the dy-
namics of the coupled system. It can be found that at
the moment Tsw = π/λeff, the system evolves from the
state |0〉1q|1〉2q to the state |1〉1q|0〉2q via the intermediate
states |±〉q through microwave driving, and vice versa.

The state |1〉1q|1〉2q remains unchanged during this pro-
cess, while the system will be brought from the state
|0〉1q|0〉2q to the state |B〉1|0〉2q or |0〉1q|B〉2, and back again
at the moment Tsw. Therefore, in the language of quan-
tum information theory, this operation corresponds to
a SWAP gate. This gate can be exploited to real-
ize quantum state transfer between two NV spins, i.e.,
(α|0〉1q + β|1〉1q)|1〉2q → |1〉1q(α|0〉2q + β|1〉2q).
The gate fidelity is limited by the following factors:

(i) spin decoherence induced by phonon excitations with
an effective decay rate Γ ≃ nthγmg

2/|Λ − ωnt|2; (ii) sin-
gle spin dephasing due to low-frequency noise with a de-
phasing rate γs, which is assumed to be Markovian for
simplicity. Recent work has shown that by coupling a
single NV spin to another two-level system and encoding
quantum information in the dark-states |0〉 and |D〉, the
coherent time T2 can be prolonged [57]. For isotopically
purified diamond, we can safely choose T2 ∼ 1 ms. Tak-
ing these factors together, we find the gate fidelity can
be estimated as F ∼ (1− TswΓ− Tsw/T2) > 0.95 for the
given parameters, with an operating time Tsw ∼ 50 µs.
Conclusions.– We have proposed a spin-

nanomechanical hybrid device where a single NV
center spin in diamond is coupled to the vibrational
mode of a suspended current-carrying carbon nanotube.
It makes the strong spin-mechanical coupling at a single
quantum level feasible, and allows fast mechanical
control of spin qubits and efficient phonon cooling by
an NV center. Such a device can find applications in
phonon-mediated quantum information processing with
NV spin qubits, and could serve as novel nanoscale
sensors for detecting tiny pressure, temperature, electric
and magnetic field changes.
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Franco Nori, “Hybrid quantum circuit consisting of a su-
perconducting flux qubit coupled to a spin ensemble and
a transmission-line resonator,” Phys. Rev. B 87, 144516
(2013).
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