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The geometry and topology of quantum systems have deep connections to quantum dynamics.
In this paper, I show how to measure the non-Abelian Berry curvature and its related topological
invariant, the second Chern number, using dynamical techniques. The second Chern number is the
defining topological characteristic of the four-dimensional generalization of the quantum Hall effect
and has relevance in systems from three-dimensional topological insulators to Yang-Mills field theory.
I illustrate its measurement using the simple example of a spin-3/2 particle in an electric quadrupole
field. I show how one can dynamically measure diagonal components of the Berry curvature in an
over-complete basis of the degenerate ground state space and use this to extract the full non-Abelian
Berry curvature. I also show that one can accomplish the same ideas by stochastically averaging
over random initial states in the degenerate ground state manifold. Finally I show how this system
can be manufactured and the topological invariant measured in a variety of realistic systems, from
superconducting qubits to trapped ions and cold atoms.

Topological invariants such as the first Chern number
have become relevant in condensed matter physics, de-
scribing novel states of matter [1–5]. While naturally
defined in the Brillouin zone, these geometric concepts
and the Berry phase on which they are based occur in a
wide variety of systems. In particular, these ideas have
been recently applied to engineer and measure topolog-
ical properties of designed systems, such as many-body
cold atomic systems [6–8] and few-body systems of qubits
or random walkers [9–11].

It was noted early on [12, 13] that higher topologi-
cal invariants could be defined, and particularly that a
non-trivial second Chern number [14] characterizes sys-
tems with time-reversal symmetry. More recently, this
has been connected the four-dimensional generalization
of the quantum Hall effect [15] and three-dimensional
topological insulators [16]. It is also intricately related
to the axion electrodynamics used to define 3D topolog-
ical insulators and non-perturbative instanton effects in
Yang-Mills field theory.

This higher topological invariant has never been mea-
sured experimentally. Here I propose how the second
Chern number may be measured using non-adiabatic ef-
fects similar to those used in Refs. [10] and [11] to mea-
sure the first Chern number. The proposal relies on
time-reversal invariant Hamiltonians to enforce a doubly-
degenerate ground state and thus the previous proposal
must be extended to account for these degeneracies. This
involves measuring a fundamentally non-Abelian topo-
logical object. I show two ways to account for this –
one by deterministically sampling over degenerate ground
states and another by stochastic sampling – which may
be relevant for different experimental systems. I close by
discussing how to access this physics in current experi-
ments.

Dynamics with degeneracies - Consider a Hamiltonian
H(λ) that depends on parameters λ. If one starts in the

non-degenerate ground state |ψ0(λi)〉 at λi and ramps λ
slowly with time, at zeroth order the system simply re-
mains in it ground state and picks up both a dynamical
and Berry phase [17]. If the ground state remains non-
degenerate during the course of the ramp, the leading
non-adiabatic correction giving population in the excited
states can be calculated using adiabatic perturbation the-
ory [18–24]. One starts by going to a moving frame
|ψ〉 → U(λ)†|ψ〉, where U(λ) diagonalizes the Hamil-
tonian (Hd = U†HU). In the moving frame, the Hamil-
tonian becomes

Hm = Hd − iλ̇µU†∂µU ≡ Hd − λ̇µAmµ , (1)

where ∂µ ≡ ∂/∂λµ and repeated indices are summed
over. We refer to the second term Aµ = UAmµ U†
as the Berry connection operator as its matrix ele-
ments in the energy eigenbasis |ψn〉 are 〈ψm|Aµ|ψn〉 =
i〈ψm(λ)|∂µψn(λ)〉. Diagonal terms in Hm give rise to
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Figure 1. Measuring second Chern number dynamically. (a)
General setup where measurement is possible. N degenerate
ground states are separated by a non-zero gap from the ex-
cited states. The ground states must remain degenerate and
gapped from the excited states, but with no restrictions on
the excited states. (b) Illustration of the ramping protocol to
find one component F jjµν of the non-Abelian Berry curvature
at measurement point φ.
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the dynamical and Berry phases, since Aµ = 〈ψ0|Aµ|ψ0〉
is the ground state Berry connection. Off-diagonal terms
give rise to non-adiabatic occupation in the excited
states, which can be derived by applying static pertur-
bation theory to Hm: cn 6=0 ≈ λ̇µ〈ψn|Aµ|ψ0〉/(En − E0),
where |ψ〉 =

∑
n cn|ψn〉. Calculating the “generalized

force” Mν ≡ −〈∂νH〉 in this state gives the correc-
tion Mν ≈ M0

ν − λ̇µFµν , where Fµν = ∂µAν − ∂νAµ
is the ground state Berry curvature [25–30]. This term
is analogous to the “anomalous velocity” that appears
semi-classicaly for Bloch electrons [31, 32] and can be
thought of as a Lorentz force in parameter space. It has
been used to experimentally measure the Berry curva-
ture within non-degenerate ground state manifolds, from
which the topologically-invariant first Chern number can
be extracted [10, 11].

This formalism has been generalized to situations
where the ground state is degenerate [33–36]. For the
simplest case where the ground state remains N -fold
degenerate throughout the process, we can reformulate
these results through the above formalism. First note
that, unlike the non-degenerate case, the connection and
curvature are now non-Abelian, giving rise to unitary
rotations within the ground state subspace. In our
language of adiabatic perturbation theory, these non-
Abelian effects can be seen as first-order degenerate per-
turbation theory; at a given point λ during the ramp,
one must diagonalizeAmµ within the degenerate subspace,
the eigenstates of which then just pick up separate Berry
phases. The non-Abelian aspect comes as the diagonal
basis of Amµ changes with λ. From integrating Eq. 1, we
see that the anholonomy is given up to a dynamical phase
by the path-ordered integral Pexp

[
i
´ λ
λi
dλ′µAµ(λ′)

]
[33].

Note that Aijµ ≡ i〈ψ0i|∂µψ0j〉 is now anN×N matrix giv-
ing the non-Abelian Berry connection within the ground
state sector.[37]

Fortunately, the off-diagonal terms responsible for ex-
citations do not notice this degeneracy. Consider a path
λ(s) such that an adiabatic traversal would yield a par-
ticular ground state |ψ0A(λ)〉. Tracing the same path
at a finite rate, the ground state component of the wave
function is unchanged at order λ̇. Excitations are given
by the natural extension of the earlier formula:

|ψ(λ(t))〉 ≈ |ψ0A(λ)〉+ iλ̇µ
∑
n 6=0

|ψn(λ)〉 〈ψn|∂µψ0A〉
En − E0

.

One may readily confirm that the generalized force in
this state sees the diagonal component of the non-Abelian
Berry curvature matrix Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ],
i.e., Mν ≈M0

νA − λ̇µFAAµν . Note that the adiabatic value
M0
νA depends on the path λ(s). Thus our results for

this observable are similar to the non-degenerate case,
but with the important caveat that two different paths
with the same value of λ and λ̇ at time t will not nec-
essarily give the same Berry curvature correction to the

generalized force.
Second Chern number - The question then becomes

what to make of the non-Abelian Berry curvature mea-
surement if one can not easily predict the adiabatically-
connected state. We want a quantity that is independent
of the choice of basis; we find it in the topologically in-
variant Chern number. The simplest example is the first
Chern number, defined for a closed two-dimensional man-
ifoldM2 as C1 = (2π)−1

´
M2

dλµ∧dλνTr(Fµν), where ∧
denotes the wedge product . A novel topological invari-
ant that appears for the four-dimensional manifold M4

is the second Chern number

C2 =

ˆ
M4

ωµνρσ2 dλµ ∧ dλν ∧ dλρ ∧ dλσ (2)

ωµνρσ2 =
Tr(FµνFρσ)− Tr(Fµν)Tr(Fρσ)

32π2
,

where ω2 is the second Chern form. The trace is taken
over the ground state (upper) indices, Tr(FµνFρσ) ≡
F ijµνF

ji
ρσ, rendering C2 basis invariant. But one clearly

requires knowledge of off-diagonal elements of F to take
this trace, while our non-adiabatic scheme only yields di-
agonal elements. I will now discuss two schemes to fill in
this gap.

First, let us see how we can deterministically recon-
struct F by measuring its diagonal elements in an over-
complete basis. For concreteness, assume there are N =
2 degenerate ground states, |ψ0A〉 and |ψ0B〉. F ijµν is
anti-symmetric w.r.t. exchange of the lower (parame-
ter) indices and Hermitian w.r.t. the upper ones. Thus
each matrix Fµν is determined by N2 real numbers. If
we measure the diagonal components in the four states
|ψ1〉 = |ψ0A〉, |ψ2〉 = |ψ0B〉, |ψ3〉 = (|ψ0A〉 + |ψ0B〉)/

√
2,

and |ψ4〉 = (|ψ0A〉+ i|ψ0B〉)/
√

2, then

Fµν =

(
FAAµν FABµν
FBAµν FBBµν

)
=

(
F 11
µν

2iF 33
µν+2F 44

µν−(1+i)(F
11
µν+F

22
µν)

2i

(FABµν )∗ F 22
µν

)
, (3)

from which evaluating the second Chern number integral
is just math. This method is well-suited to controllable
quantum systems where one has the ability to prepare ar-
bitrary initial states. It trivially generalizes to arbitrary
N .

Absent such a degree of control, a similar result may
be achieved by stochastically sampling over ground states
|ψ〉. This measurement technique is natural if one only
has access to random snapshots of the system but may
make multiple non-destructive measurements of the same
state, as may be natural in the solid state. This method
is discussed in the Supplementary Information.

Spin-3/2 model - I now demonstrate the applicability
of these measurement techniques for the quintessential
example of a system with non-trivial second Chern num-
ber: the quantum spin-3/2 in an electric quadrupole field.
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This model was proposed by Avron et al. [12, 13] as con-
taining a “quaternionic singularity” [38] giving C2 much
as the monopole singularity of the Berry curvature in a
spin-1/2 yields non-trivial C1. The Hamiltonian may be
written as H = −λ · H, where H = (H0, H1, . . . ,H4)
denotes an orthonormal basis of spin-3/2 quadrupole
operators and λ denotes vector of coupling parame-
ters. In particular, we choose the basis in Ref. 13:
H0 = (−J2

x − J2
y + 2J2

z )/3, H1 = (JxJz + JzJx)/
√

3,
H2 = (JyJz + JzJy)/

√
3, H3 = (J2

x − J2
y )/
√

3, and
H4 = (JxJy + JyJx)/

√
3. These Hamiltonians are in-

variant under time reversal, so the eigenvalues come in
two degenerate pairs. By construction, the energy eigen-
values of each are ±1; due to orthonormality, this is also
true for arbitrary unit 5-vector λ.

It is clear from the above discussion that the only way
for all four eigenvalues to be degenerate is to have λ = 0;
this is the “quaternionic monopole” that gives a non-zero
second Chern number. Avron et al. showed that for a
4-sphere surrounding this degeneracy, the second Chern
number is equal to 1. Furthermore, due to time reversal
symmetry this system has C1 = 0, so C2 is its defining
topological invariant. I will now show how the above
ideas can be used to measure C2 directly.

Let us begin by fixing |λ| = 1 and re-parameterizing
in terms of the spherical angles φ = (φ1, φ2, φ3, φ4),
where φ4 ∈ [0, 2π), φ1−3 ∈ [0, π), λ0 = cosφ1, λ1 =
sinφ1 cosφ2, . . ., λ4 = sinφ1 sinφ2 sinφ3 sinφ4. To ob-
tain the Chern form at some point φ, we begin with
one of the states |ψ1−4〉 described earlier for the value
φ = 0 (the North pole). Here the Hamiltonian has
the simple form H = 5/4 − J2

z , so that ground states
are just the mz = ±3/2 eigenstates. Starting from
one of these states, say |ψ1〉, we ramp slowly along
some arbitrary path φ1(s) to the measurement point
φ. Then to measure the component F 11

µν , we ramp
φµ = φmµ + v(t − tm)t2/t2m, where φmµ is its value at
the point to be measured. This ramp is chosen to start
slowly (φ̇µ(0) = 0) at φµ(0) = φmµ and return to φmµ
at time tm with velocity v. Repeating this ramp multi-
ple times with velocity v/2 and measuring the expecta-
tion values Mν(v) and Mν(v/2), the Berry curvature is
F 11
µν ≈ 2[Mν(v/2)−Mν(v)]/v. This protocol, illustrated

in Fig. 1, must be repeated for all pairs (µ, ν) and all
initial states |ψi〉 to obtain the second Chern form at
the point φ via Eq. 3. Crucially, for a given point φ,
the same path φ1 must be taken for each component of
the tensor to ensure that the appropriate phase relations
between the |ψi〉’s remain once ramped to φ. From the
second Chern form, the second Chern number may be ob-
tained by the integral in Eq. 2. Carrying out the above
procedure with Monte Carlo integration over φ yields
C2 = 0.9926± 0.0073, consistent with the exact value of
1.

To demonstrate the robustness of this topological in-
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Figure 2. Experimental realizations of four-level systems
where the second Chern number may be measured: (a) atomic
hyperfine levels, (b) bound states of an artificial atom, (c) a
particle hopping in a 4-site lattice. While all sites/levels must
be coupled to realize arbitrary 4×4 Hamiltonians, only the in-
dicated drives/hoppings are necessary in the presence of sym-
metry about the λ0 axis. (d) Second Chern number measured
dynamically for a spin-3/2 in an electric quadrupole field, as
described in the text, either without utilizing symmetry (blue
points) or with symmetry (red points). The deviation from
quantization near the transition at Λ0 = 1 is due to using
finite time protocols; I ramp from the North pole to the mea-
surement point in time t = 100 then ramp for measurement
with v = 0.01 and tm = 100. The inset shows how as Λ0H0

is added, the 4-sphere shifts away from the origin until even-
tually the (4-fold) degeneracy at λ = 0 is no longer enclosed.

variant, we may induce a topological transition by adding
a constant offset Λ0H0 to the previous Hamiltonian. This
shifts the unit sphere by an amount Λ0, and for |Λ0| > 1
the sphere fails to surround the degeneracy at the origin.
Therefore, the second Chern number jumps to being triv-
ial. This topological transition is seen in the simulations
in Fig. 2d; the transition appears broadened for a finite
velocity v due to higher-order non-adiabatic corrections
near the gapless transition point.

Experiments - The above procedure naturally lends it-
self to controllable quantum systems such as supercon-
ducting qubits, ultracold atoms, ions, and solid state de-
fects. For such systems, more detailed topological and ge-
ometric properties such as the Wilson loop may be mea-
sured via full tomography of adiabatic protocols; the dy-
namic second Chern number measurement supplements
this natural toolkit. However, the dynamical measure-
ment trivially generalizes to more complicated systems
where full tomography is not possible, requiring neither
strict adiabaticity nor tomographic measurements that
scale exponentially with system size.

A useful experimental trick is to use the symmetry of
the sphere to reduce the number of measurements that
must be made. As the simplest example of this, consider
the case Λ0 = 0 where the problem has full spherical
symmetry. Then, since all points on the sphere are iden-
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tical, the Chern number can be obtained by measuring
the Berry curvature at a single point. Starting in the
ground state at the North pole, there are four orthonor-
mal tangent vectors: λ̂1, λ̂2, λ̂3, and λ̂4. We can mea-
sure the response to these parameters as we did with φ.
For instance, we obtain Fλµλν by ramping λµ and mea-
suring Mλν = −〈Hν〉. By symmetry, Tr(Fλ1λ2

Fλ3λ4
−

Fλ1λ3Fλ2λ4 + Fλ1λ4Fλ2λ3) = 3Tr(Fλ1λ2Fλ3λ4) ∼ ω2 will
be constant at any point on the sphere. So we simply
multiply by the surface area of the unit 4-sphere to get[39]

C2 =
3AS4Tr(Fλ1λ2

Fλ3λ4
)

4π2
= 2Tr(Fλ1λ2Fλ3λ4). (4)

We thus expect that Tr(Fλ1λ2
Fλ3λ4

) = 1/2, which is
readily confirmed numerically.

The argument must be slightly modified in the pres-
ence of an offset Λ0, but symmetry still significantly re-
duces the number of measurements required. λ0 is now
distinct from the other axes, which translates into a φ1-
dependence of the second Chern form. The axes tangent
to a point φ = (φ1, 0, 0, 0) are now φ̂1, λ̂2, λ̂3, and λ̂4,
so the non-trivial terms Fφ1λ2 and Fλ3λ4 are obtained by
ramping φ1 and λ3 and measuring 〈H2〉 and 〈H4〉 respec-
tively. For a given φ1, the remaining parameters trace out
a 3-sphere of radius sinφ1 with surface area 2π2 sin3 φ1.
By the same logic as Eq. 4, one finds

C2 =
3

2

ˆ π

0

dφ1 sin3 φ1Tr [Fφ1λ2
(φ1)Fλ3λ4

(φ1)] . (5)

The resulting Chern number is shown in Fig. 2d.
In addition to reducing the number of measurements,

Eq. 5 reduces the number of control axes required; one
need only ramp φ1(i.e. λ1 and λ2) and λ3, by symmetry
any three λs will do. This is reduced further to only two
λs in the fully symmetric case. While one may in princi-
ple realize arbitrary 4× 4 Hamiltonians given four levels
fully-connected by drives [40], a more natural situation
is partially-connected levels like those illustrated in Fig.
2 [41–43]. For such couplings, not all of the terms can be
easily realized, but fortunately a sufficient number can
be realized to allow the measurement using symmetry.
This can be seen from the representations of Hi in the
Jz basis:

H0 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , H1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , etc.

If we think of the four states as positions of a particle
on a 4-site chain, then H0 represents on-site chemical

potentials, while H1 and H2 represent nearest-neighbor
hopping. This is well within the capacity of the driven
system, and could even be realized with a 4-site superlat-
tice via lattice-shaking schemes analogous to those used
to generate artificial gauge fields [6, 7].

Instead of imprinting the Hamiltonian structure on
Hilbert space by hand, we might instead be given a sys-
tem with natural structure of its own, say two coupled
spins-1/2 [44–46]. In this case, the Hamiltonians may
be written as H0 = σz1σ

z
2 , H1 = σx1σ

z
2 , H2 = σy1σ

z
2 ,

H3 = σx2 , and H4 = σy2 . Of these operators, H0, H3 and
H4 are naturally realized in both trapped ions [46] and
transmon qubits [47]. Similarly, we can imagine directly
obtaining J = 3/2 by fusing three spin-1/2’s. In this
language, H0 is proportional to an Ising-like interaction∑
<ij> σ

z
i σ

z
j , although the other Hi’s seem less natural.

This three-qubit realization may become possible in this
fast-developing field, but the two-qubit version is already
experimentally feasible.

Discussion - In conclusion, I have shown how to mea-
sure topological transitions of the non-Abelian second
Chern number C2 in experimentally-realizable systems.
This topological invariant is necessarily quantized, which
could prove valuable in metrological applications much
as topologically-protected response of the quantum Hall
effect allows one to obtain e2/h with unprecedented preci-
sion [48]. An interesting open question is how to connect
these results in the language of generic many-body quan-
tum systems with parameters λ to solid state physics,
where single-particle Bloch states with momentum k pro-
vide a natural parameter space [49, 50]. In particular, the
four-dimensional Chern insulator analogous to our spin-
3/2 example has a quantized non-linear electromagnetic
response [15] and has recently become relevant in artifi-
cial 4D systems of cold atoms, photons, and quasicrystals
[51–54]. Our method for measuring C2 involves linear re-
sponse, followed by classical post-processing. How these
linear and non-linear responses arise from the same topo-
logical invariant remains an intriguing open question.

Acknowledgments - I would like to acknowledge useful
conversations with Claudio Chamon, Joel Moore, Ana-
toli Polkovnikov, Ana-Maria Rey, Seiji Sugawa, and Jun
Ye. During preparation of the manuscript, I became
aware of independent experimental work by the Spiel-
man group to measure the second Chern number via re-
lated techniques[55]. I am pleased to acknowledge sup-
port from AFOSR FA9550-13-1-0039 as well as Labora-
tory Directed Research and Development (LDRD) fund-
ing from Berkeley Lab, provided by the Director, Office
of Science, of the U.S. Department of Energy under Con-
tract No. DEAC02-05CH11231.

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).



5

[2] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372 (1985).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[4] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[5] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[6] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).
[7] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).
[8] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and N. Goldman,

Nat Phys 11, 162 (2015).
[9] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011).

[10] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and
K. W. Lehnert, Phys. Rev. Lett. 113, 050402 (2014).

[11] P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen,
B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. O/’Malley, D. Sank, A. Vainsencher, J. Wenner,
T. White, A. Polkovnikov, A. N. Cleland, and J. M. Martinis, Nature 515, 241 (2014).

[12] J. E. Avron, L. Sadun, J. Segert, and B. Simon, Phys. Rev. Lett. 61, 1329 (1988).
[13] J. E. Avron, L. Sadun, J. Segert, and B. Simon, Communications in Mathematical Physics 124, 595 (1989).
[14] M. Nakahara, Geometry, topology and physics (CRC Press, 2003).
[15] S.-C. Zhang and J. Hu, Science 294, 823 (2001).
[16] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).
[17] M. V. Berry, Proc. Roy. Soc. A 392, 45 (1984).
[18] M. Born and V. Fock, Zeitschrift fÃŒr Physik 51, 165 (1928).
[19] T. Kato, Journal of the Physical Society of Japan, J. Phys. Soc. Jpn. 5, 435 (1950).
[20] M. V. Berry, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 414, 31

(1987).
[21] G. Nenciu, Comm. Math. Phys. 152, 479 (1993).
[22] S. Teufel, Adiabatic perturbation theory in quantum dynamics (Springer Science & Business Media, 2003).
[23] G. Rigolin, G. Ortiz, and V. H. Ponce, Phys. Rev. A 78, 052508 (2008).
[24] C. De Grandi and A. Polkovnikov, Quantum Quenching, Annealing and Computation, edited by A. K. Chandra, A. Das,

and B. Chakrabarti, Vol. 802 (Springer, 2010) pp. 75–114.
[25] C. A. Mead and D. G. Truhlar, The Journal of Chemical Physics 70, 2284 (1979).
[26] C. Alden Mead, Chemical Physics 49, 23 (1980).
[27] R. Jackiw, Comm. At. Mol. Phys. 21, 71 (1988).
[28] M. Berry, in Geometric Phases In Physics, edited by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989) pp.

7–28.
[29] M. V. Berry and J. M. Robbins, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences 442, 659 (1993).
[30] V. Gritsev and A. Polkovnikov, Proceedings of the National Academy of Sciences 109, 6457 (2012).
[31] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[32] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
[33] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[34] G. Rigolin and G. Ortiz, Phys. Rev. Lett. 104, 170406 (2010).
[35] G. Rigolin and G. Ortiz, Phys. Rev. A 85, 062111 (2012).
[36] G. Rigolin and G. Ortiz, Phys. Rev. A 90, 022104 (2014).
[37] More accurately, this derivation holds if the path-ordered integral and the matrix Aµare represented in the moving frame

by just integrating the moving-frame Schrodinger equation within the degenerate subspace (the upper N × N block).
Care must be taken in defining these anholonomies for large paths in parameter space, as a non-trivial C2 serves as an
obstruction to defining a global U(N) gauge.

[38] C. N. Yang, Journal of Mathematical Physics 19, 320 (1978).
[39] Note that because of time-reversal symmetry, the first Chern form vanishes: Tr(Fµν) = 0. Therefore the second Chern

form reduces to ωµνρσ2 = Tr(FµνFρσ)/32π2.
[40] Note that the matrix elements of the arbitrary 4× 4 Hamiltonians may be controlled by tuning the amplitude, phase, and

detuning of the drives.
[41] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Science 349, 1514 (2015).
[42] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and

L. Fallani, Science 349, 1510 (2015).
[43] M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper, J. Ye, and A. M. Rey, Phys. Rev. Lett. 116, 035301 (2016).
[44] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin,

Science 314, 281 (2006).
[45] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 76, 042319 (2007).
[46] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G.-D. Lin, L.-M. Duan, and C. Monroe,

Nature 465, 590 (2010).
[47] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Phys. Rev. Lett. 91, 167005

(2003).



6

[48] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[49] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[50] Q. Niu and D. J. Thouless, Journal of Physics A: Mathematical and General 17, 2453 (1984).
[51] J. M. Edge, J. Tworzydlo, and C. W. J. Beenakker, Phys. Rev. Lett. 109, 135701 (2012).
[52] Y. E. Kraus, Z. Ringel, and O. Zilberberg, Phys. Rev. Lett. 111, 226401 (2013).
[53] H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman, Phys. Rev. Lett. 115, 195303 (2015).
[54] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in integrated photonics:

From optical isolation to 4d quantum hall physics,” ArXiv:1510.03910.
[55] S. Sugawa et al., In preparation.


