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We propose a class of photonic Floquet topological insulators based on staggered helical lattices
and an efficient numerical method for calculating their Floquet bandstructure. The lattices support
anomalous Floquet topological insulator phases with vanishing Chern number and tunable topo-
logical transitions. At the critical point of the topological transition, the bandstructure hosts a
single unpaired Dirac cone, which yields a variety of unusual transport effects: a discrete analogue
of conical diffraction, weak antilocalization not limited by intervalley scattering, and suppression of
Anderson localization. Unlike previous designs, the effective gauge field strength can be controlled
via lattice parameters such as the inter-helix distance, significantly reducing radiative losses and
enabling applications such as switchable topological wave-guiding.
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Photonic topological insulators (PTIs) are an emerg-
ing class of photonic devices possessing topologically-
nontrivial gapped photonic bandstructures [1–14], analo-
gous to single-particle electronic bandstructures of topo-
logical insulators [15]. They have potential applications
as robust unidirectional or polarization-filtered waveg-
uides, and as scientific platforms for probing topological
effects inaccessible in condensed-matter systems. In the
technologically important optical frequency regime, only
two PTIs have been demonstrated in experiment: arrays
of helical optical waveguides [6], and coupled ring res-
onators [7–9, 11, 13]. These two different designs each
possess unique advantages. Waveguide array PTIs, for
instance, allow the propagation dynamics of topological
edge states to be directly imaged [6]. The design of the
waveguide array PTI is based on the “Floquet topologi-
cal insulator” concept [16–19], which originally described
quantum systems with time-periodic Hamiltonians; the
idea is that topologically nontrivial states can be induced
via periodic driving [16–19], rather than via magnetic or
spin-orbit effects in a static Hamiltonian. In the PTI, the
Hamiltonian describes the classical evolution of the op-
tical fields in the waveguide array, and its periodic drive
arises from the helical twisting of the waveguides [6, 20].

Floquet topological insulators are highly interesting
because they exhibit topological phenomena that have
no counterparts in static Hamiltonians [21–28]. For ex-
ample, there can exist two dimensional (2D) “anomalous
Floquet insulator” (AFI) phases which are topologically
nontrivial—including hosting protected edge states—
despite all bands having zero Chern number [11, 13, 22–
26]. When disorder is introduced, the anomalous topo-
logical edge states become the only extended states, with
all other states localized [27]. At critical points between
topological phases, Floquet bandstructures can exhibit

unpaired Dirac cones, defeating the “fermion-doubling”
principle [29]. It is thus noteworthy that these unusual
features were not accessed by the experiments of Ref. 6.
The waveguide array was always observed in a stan-
dard Chern insulator phase generated by weak periodic
driving; transitions to any other topologically nontrivial
phase were unachievable because the strength of the ef-
fective gauge field was controlled by the bending radius of
the helical waveguides. Radiative losses, which increase
exponentially with bending [30], came to dominate before
any “strong field” topological transitions were reached [6].

This paper describes a class of waveguide arrays over-
coming the above limitations, allowing for the observa-
tion of topological transitions between conventional in-
sulator, Chern insulator, and AFI phases, as well as un-
paired Dirac cones at the transition points. To the best
of our knowledge, AFI phases and unpaired Dirac cones
have never been demonstrated in optical-frequency PTIs.
Continuously tuned transitions between trivial and non-
trivial topological phases, or into an AFI phase, have
never been observed in any 2D PTI. Our design is based
on “staggered” lattices of helical waveguides, with each of
the two sublattices having a different helix phase. The
two-band Floquet bandstructure can be tuned to differ-
ent topological phases by varying the nearest-neighbor
coupling strength or sublattice asymmetry. We can ac-
cess different topological phases while maintaining small
bending radii; the bending losses for reaching the con-
ventional insulator to AFI transition are reduced by
around two orders of magnitude compared to the topo-
logical transition discussed in Ref. 6. This design thus
shows promise for low-loss topological waveguides that
are switchable (e.g. via optical nonlinearity).

The critical Floquet bandstructure hosts an unpaired
Dirac cone. This is unlike any other previously ob-
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FIG. 1. (Color online) A square staggered lattice of helical
waveguides. (a) Schematic of two neighboring waveguides,
twisting clockwise along the propagation axis z with relative
phase shift π. (b) Cross section of the lattice potential at each
helix quarter-cycle, with the circular trajectories overlaid. (c)
Phase diagram of the tight-binding model, in terms of the
sublattice asymmetry ∆ and coupling strength θc. Red dots
indicate the parameters for the band diagrams in Fig. 2. The
nontrivial phase forms an AFI along the ∆ = 0 line and a
Chern insulator for ∆ 6= 0. (d) Tight-binding bulk spectrum
at the black square in (c), along the phase boundary.

served photonic band-crossing points, which involve ei-
ther paired Dirac points [33], quadratic dispersion [34],
or an attached flat band [35, 36]. The unpaired Dirac
cone is reminiscent of the chiral bandstructure of the Hal-
dane model with broken parity and time-reversal sym-
metries [31], or surface states of 3D topological insula-
tors [15, 32]. Here, it arises from a Floquet process, and
specifically the fact that the Floquet bandstructure is a
“quasienergy” spectrum (see below). Wave propagation
in the critical PTI is immune to the inter-valley scattering
that occurs with pairs of Dirac cones [37]. Based on this,
we demonstrate a novel “discrete” conical diffraction ef-
fect, generated by exciting a single unit cell, as well as re-
sistance to localization in the presence of short-range dis-
order [38]. We note that although similar Floquet band-
structures that can host unpaired Dirac cones have previ-
ously been studied theoretically [9, 17, 29], those studies
lacked information about the propagation dynamics of
the Dirac cone states, which we can investigate using our
experimentally realistic waveguide array models.

An example of the staggered helix design is the square
lattice shown in Fig. 1(a)–(b). There are two sublattices,
forming a checkerboard pattern; the helices on each sub-
lattice are shifted relative to each other in the z direc-
tion, by half a helix cycle. This produces a z-dependent

separation between waveguides, so that each waveguide
approaches its four nearest neighbors in turn at each
quarter-cycle. Similar schemes can be implemented in
other lattice geometries, such as a honeycomb lattice [23].
For simplicity, this paper focuses on the square lattice.

First, we model the lattice in a tight-binding approxi-
mation similar to a 2D discrete-time quantum walk [39].
Since the inter-waveguide couplings are evanescent, we
assume each waveguide couples to one neighbor at a
time. The Floquet evolution operator, Û , is defined by
ψ(z + Z) = Ûψ(z), where Z is the helix period and
ψ = (ψA, ψB) are the tight-binding amplitudes on each
sublattice. Û factorizes into a series of independent two-
waveguide couplings, separated by free evolution:

Û = Ŝ (−k−) Ŝ (−k+) Ŝ (k−) Ŝ (k+) , (1)

with the notation k± ≡ (kx ± ky)/
√

2, where kx,y are
the crystal momenta in units of the inverse waveguide
separation in the absence of modulation; and

Ŝ(κ) =

(
ei∆ cos θc −iei(∆+κ) sin θc

−ie−i(∆+κ) sin θc e−i∆ cos θc

)
, (2)

where ∆ is a small detuning between the sublattice prop-
agation constants (which can be implemented by having
different waveguide refractive indices), and θc is the cou-
pling strength. Since Û is unitary, its eigenvalues have
the form eiβ(k) where β(k) is the “quasienergy” spectrum.
Note that this model resembles the 2D quantum walk de-
scribed in Ref. [22], with time evolution replaced by prop-
agation in z, and that Ŝ(κ) is the most general scattering
matrix permitted by the lattice symmetries [40].

Fig. 1(c) shows the phase diagram of the quasienergy
bandstructure, as a function of ∆ and θc. The system is
a trivial insulator at weak couplings, and a topological
insulator above a critical coupling strength [40]. At the
transition, the bandstructure has an unpaired Dirac cone
at the Γ point, as shown in Fig. 1(d). Increasing ∆ pushes
the two bands away from quasienergy β = 0 and closer
towards reconnecting at β = ±π, reducing the critical
coupling strength. At θc = π/2, the bands merge into a
topological flat band [22].

The ∆ = 0 case is particularly interesting. Here, the
sublattice symmetry enforces a line degeneracy at the
Brillouin zone edge, so there is a single band gap. For
small θc, the spectrum resembles that of an unmodulated
square lattice with a single Bloch band folded back onto
itself. At the critical point θc = π/4, the formation of
the Dirac cone leads to a completely gapless spectrum.
A long-wavelength expansion of Û ≈ exp[−i(ĤD − π)]
about the Γ point yields an effective Dirac Hamiltonian,

ĤD(k) = −kxσ̂z + kyσ̂y − 4(θc − π/4)σ̂x, (3)

where σ̂x,y,z are the Pauli matrices. For θc > π/4, the
system is an AFI [22–26] with unidirectional topological
edge states.
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To apply these ideas to a realistic photonic lattice, such
as femtosecond laser-written waveguides in fused silica [6,
25, 41], we now go beyond the tight-binding description.
A photonic lattice is described by a paraxial field ψ(r, z)
governed by the Schrödinger equation

i∂zψ = − 1

2k0
∇2
⊥ψ −

k0δn(x, y, z)

n0
ψ, (4)

where ∇2
⊥ = ∂2

x + ∂2
y , k0 = 2πn0/λ, and the refractive

index is n0 = 1.45 at wavelength λ = 633nm, with mod-
ulation δn ∼ 7.5× 10−4. Similar to real experiments, we
give the waveguides elliptical cross sections with axis di-
ameters 11µm and 4µm [6], as shown in Fig. 1(b). They
form a square lattice with mean waveguide separation
a, helix radius R0, and pitch Z. We can increase the
effective coupling, θc, by increasing 1/a, R0, or Z.

Direct calculation of the Floquet bandstructure for a
continuum model (as opposed to a tight-binding model)
is a nontrivial task, because the quasienergies βn,k are
defined modulo 2π/Z, so there is no ground state for
numerical eigensolvers to converge on, and continuum
(unguided) modes enter in an uncontrolled way. We de-
vised an efficient method for performing this calculation
by truncating the evolution operator Û to a basis formed
by the static Bloch waves at z = 0. This amounts to
a quasi-static approximation neglecting coupling to un-
bound (continuum) modes. Bending losses can be es-
timated via the norm of the Floquet evolution operator
eigenvalues, by findings its deviation from unitarity. Fur-
ther details are given in the Supplemental Material [40].

We now fix R0 = 3µm and Z = 2 cm. This yields a
loss of <∼ 0.02dB/cm, independent of topological phase,
which we tune by varying a and/or ∆. By constrast, the
strength of the effective gauge field in the unstaggered
lattice of Ref. 6 was tuned by increasing R0, which also
increased the bending losses exponentially [30]. That lim-
ited the system to the “weak field” perturbative regime;
losses exceeded 3dB/cm before reaching a predicted
strong field topological transition (between two Chern
insulators), making that transition unobservable.

Fig. 2 shows the band structure for a strip geome-
try. For comparison, results from the truncated-Bloch
method are plotted together with the results from a fitted
tight-binding model [40]. The two methods agree well,
particularly in the weak-coupling regime. In Fig. 2(a),
we see that the system is a trivial insulator, with a single
band and a single gap (note that the spectrum is peri-
odic along the β axis), whereas in Fig. 2(b), the gap has
closed and reopened, inducing chiral edge states centered
at β ∼ π. This is the AFI phase; the Chern number of
the single band is necessarily zero, despite the presence
of chiral edge states. The transition point is shown in
Fig. 2(c), which features an unpaired Dirac point at the
center of the Brillouin zone. Fig. 2(d) shows a ∆ 6= 0
case, corresponding to a Chern insulator; there is both a

FIG. 2. (Color online) Band structures for a semi-infinite strip
10 unit cells wide. Blue points are obtained from the contin-
uum model, and red curves from the tight-binding model. (a)
Trivial insulator (a = 25µm, θc ≈ 0.17π,∆ = 0). (b) Anoma-
lous Floquet insulator (a = 20µm, θc ≈ 0.4π,∆ = 0). (c)
Critical phase (a = 23µm, θc ≈ π/4,∆ = 0). (d) Chern
insulator (a = 23µm, θc ≈ 0.15π,∆ ≈ π/4).

FIG. 3. (Color online) Output intensity profile after progation
through 5Z, with one edge site initially excited (red arrow).
Reducing the lattice period causes a transition into an anoma-
lous Floquet insulator phase with topological edge states.

trivial gap and a nontrivial gap, and the two bands have
Chern numbers 1 and -1, as in the Haldane model [42].

The topological transitions can be probed via beam
propagation experiments. Fig. 3 shows beam propaga-
tion simulations with a single waveguide initially excited
along the edge. For large a, with the lattice in the triv-
ial phase, the excitation simply spreads into the bulk.
Upon decreasing a, we observe a strongly-localized mode
that propagates unidirectionally along the edge, includ-
ing around corners. This is a clear signature of a topo-
logical transition to the AFI, which has never been ex-
perimentally demonstrated in a 2D photonic lattice. We
stress that varying a is just one of many possible tuning
methods. Due to the strong sensitivity of the evanescent
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FIG. 4. (Color online) Conical diffraction arising from the un-
paired Dirac point. In the upper panels, the initial excitation
is Gaussian; in the lower panels, only one unit cell is excited.
(a,d) Input and (b,e) output beam intensity. (c,f) Phase pro-
file of output cross-polarized pseudospin component, showing
clockwise phase circulation (black arrows). The lattice size is
16× 16 unit cells, and the propagation distance is L = 6Z.

coupling strength to waveguide mode localization, there
are other interesting ways to achieve controllable switch-
ing between topological phases, such as the Kerr effect
or thermal tuning.

It is also interesting to study the behavior of the lat-
tice at the critical point of the topological transition,
where the quasienergy bandstructure contains an un-
paired Dirac cone at the Brillouin zone center. A direct
method for revealing the existence of a Dirac cone is “con-
ical diffraction”, which involves constructing an initial
wavepacket from Dirac cone states, which then evolves
(under linear relativistic dispersion) into a ring with con-
stant thickness and nonzero phase winding. In honey-
comb lattices with two Dirac cones, conical diffraction
requires selectively exciting one cone, e.g. using a tilted
spatially-structured input beam [33]. With an unpaired
Dirac cone, however, we can generate conical diffraction
using simple unstructured Gaussian beams at normal in-
cidence, as shown in Fig. 4(a)–(b). This exclusively ex-
cites “pseudospin-up” Dirac modes governed by Eq. (3),
with chirality determined by the chirality of the modu-
lation δn(r, z). This intrinsic chirality is revealed by the
phase of the diffracted field. Pseudospin angular momen-
tum generates an optical vortex in the “cross-polarized”
pseudospin-down component of the diffracted field, with
vortex charge sensitive to the chirality of the Dirac dis-
persion [43]. Here, “pseudospin-down” corresponds to
light scattered into the second Brillouin zone, readily
measured via Fourier filtering [40]. Fig. 4(c) shows the
phase profile, exhibiting the predicted topological charge.

What happens as we reduce the width of the initial
Gaussian excitation? One might expect conical diffrac-
tion to be destroyed, since Eq. (3) is based on an effective-
mass (carrier-envelope) approximation in the transverse

FIG. 5. (Color online) Disorder-insensitivity at the critical
point. (a) Fourier intensity of a broad (width 5a) probe
beam, after propagating 60Z through a weakly-disordered [40]
100 × 100 lattice, averaging over 20 disorder realizations. A
weak antilocalization dip occurs in the backscattering direc-
tion (white arrow); the color scale saturates in the forward
direction. (b) Participation number P normalized by number
of waveguides 2N2 = 1800, for the tight-binding eigenmodes
of a strongly-disordered lattice. Localization is absent for
∆ = 0, but Lifshitz localization tails appear for ∆ = π/8.

plane. While that is the case for static Hamiltonians, here
diffraction is preserved by the unique features of the Flo-
quet bandstructure: the spectrum is entirely gapless, and
has no local band maxima or minima. Consequently, the
band velocity is nonzero almost everywhere, and the ini-
tial excitation evolves into a discrete conical-like diffrac-
tion pattern with a dark central spot and nonzero vortex
charge. As shown in Fig. 4(d)–(f), this holds true even
when the initial excitation is reduced to a single unit cell.

Wave propagation at the critical point should be in-
trinsically robust against disorder, due to the enforced
chirality and absence of band edges. To show this, we
introduce random site-to-site fluctuations in the waveg-
uide detunings of the tight-binding model (1). For weak
disorder, Dirac modes experience suppressed backscatter-
ing, a phenomenon known as “weak antilocalization” [38].
Usually, weak antilocalization disappears when the dis-
order is short-ranged, due to inter-valley scattering [37].
However, Fig. 5(a) shows that weak antilocalization per-
sists in our system even for completely short-range (site-
specific) disorder. Furthermore, Anderson localization
normally sets in at large disorder strengths, commencing
at the band edges. In Fig. 5(b), we probe the localization
of the tight-binding eigenmodes by their mode participa-
tion numbers, and find that localization is defeated in
the critical ∆ = 0 system due to the lack of band edges.
For ∆ 6= 0, the Floquet bandstructures have well-defined
band edges, and we correspondingly observe Lifshitz tails
of strongly-localized modes [40].

In summary, we have shown how to realize Floquet
PTIs in staggered helical waveguide arrays. Novel topo-
logical transitions, beyond those characterized by Chern
numbers, can be accessed by tuning lattice parame-
ters other than the bending radius; this allows for low-
loss operation and raises the prospect of nonlinear or
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actively-controllable, robust topological waveguide de-
vices [44]. The many interesting behaviors of the un-
paired Dirac cone at the critical point, including discrete
conical diffraction and suppression of Anderson localiza-
tion, are worth probing in detail in future experiments.
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