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We present the calculation of the cross section and invariant mass distribution for Higgs boson
pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully
taken into account throughout the calculation. The virtual two-loop amplitude has been generated
using an extension of the program GoSam supplemented with an interface to Reduze for the integral
reduction. The occurring integrals have been calculated numerically using the program SecDec.
Our results, including the full top-quark mass dependence for the first time, allow us to assess the
validity of various approximations proposed in the literature, which we also recalculate. We find
substantial deviations between the NLO result and the different approximations, which emphasizes
the importance of including the full top-quark mass dependence at NLO.

INTRODUCTION

The couplings of the Higgs boson to electroweak bosons
and heavy fermions are being established as Standard-
Model-like at an impressive rate. In contrast, the mea-
surement of the Higgs boson self-coupling, which is vi-
tal in order to confirm the mechanism of electroweak
symmetry breaking, is still outstanding, and will have
to wait until the LHC high-luminosity upgrade. How-
ever, the Higgs boson self-coupling(s) could be enhanced
by physics Beyond the Standard Model (BSM), and it is
an important task to be able to distinguish BSM effects
from effects due to higher order corrections in perturba-
tion theory.

Gluon fusion is the dominant production channel for
Higgs boson pair production. However, as this process
proceeds via a heavy quark loop already at the leading
order (LO), the next-to-leading order corrections involve
two-loop four-point diagrams with two masses, mh and
mt, and the analytic calculation of two-loop four-point
integrals with different internal and external mass scales
has not been achieved so far.

The leading order (one-loop) calculation of Higgs bo-
son pair production in gluon fusion has been performed
in Refs. [1, 2]. NLO corrections in the mt → ∞ limit
for both the Standard Model and the MSSM have been
performed in Ref. [3]. Finite top-quark mass corrections
to the NLO result have been calculated in Refs. [4–9].
The NNLO QCD corrections in the mt → ∞ effective
field theory also have been computed [6, 10, 11], and
they have been supplemented by an expansion in 1/m2

t

in Ref. [8]. In the effective field theory, resummation at
NLO+NNLL has been considered in Ref. [12], and re-

cently, even matched NNLO+NNLL resummed results
became available [13]. The dominant uncertainty there-
fore is given by the unknown top-quark mass effects at
NLO.

The top-quark mass effects have been included in var-
ious approximations in the literature:

(i) The “Born-improved HEFT (Higgs Effective Field
Theory)” approximation, which is the one em-
ployed in the program Hpair [2, 3]. It uses the
heavy top-quark limit throughout the NLO calcu-
lation, in combination with a re-weighting factor
B/BHEFT , where B denotes the leading order re-
sult in the full theory. In Hpair the re-weighting is
done at matrix element level, but after the angular
integration of the phase space, while in Ref. [7] it
is done on an event-by-event basis.

(ii) The “FTapprox” result of Refs. [5, 7] contains the
full top-quark mass dependence in the real radia-
tion, while the virtual part is rescaled by the re-
weighting factor mentioned above.
It was found that (ii) leads to a total cross section
which is about 10% smaller than the one obtained
using Born-improved HEFT.

(iii) The “FT′approx” result [7] is as in (ii) for the real
radiation part, while it uses partial NLO results
for the virtual part, specifically, the exact results
for the two-loop triangle diagrams as far as they
are known from single Higgs boson production [14–
17].

(iv) HEFT results at NLO and NNLO have been im-
proved by an expansion in 1/m2ρ

t in Refs. [4, 6, 8, 9],
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where Ref. [8] contains corrections up to ρmax = 6
at NLO, and ρmax = 2 for the soft-virtual part
at NNLO. In Ref. [8] it is also demonstrated that
the sign of the finite top-quark mass corrections de-
pends on whether the re-weighting factor is applied
at differential level, i.e. before the integration over
the partonic center of mass energy, or at total cross
section level.

All these results suggest that the uncertainty on the cross
section due to top-quark mass effects is ±10% at NLO.

In this letter we present results for the total cross sec-
tion and the Higgs boson pair invariant mass distribution
for the process gg → hh at NLO, including the full top-
quark mass dependence. The analytically unknown two-
loop integrals have been calculated numerically with the
program SecDec [18–20]. Our results settle the long-
standing question about the uncertainty related to the
various approximations which have been calculated so
far.

NLO CALCULATION

Amplitude structure

At any loop order, the amplitude for the process
g(p1) + g(p2) → h(p3) + h(p4) can be decomposed into
form factors as

Mab = δabε
µ
1 ε
ν
2Mµν (1)

Mµν = F1(ŝ, t̂,m2
h,m

2
t , D) Tµν1 + F2(ŝ, t̂,m2

h,m
2
t , D) Tµν2 ,

where εµ1 , ε
ν
2 are the gluon polarization vectors, a, b are

colour indices, and

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p2 − p3)2 . (2)

The decomposition into tensors carrying the Lorentz
structure is not unique. With the following definitions

Tµν1 = gµν − pν1 p
µ
2

p1 · p2
, (3)

Tµν2 = gµν +
1

p2
T (p1 · p2)

T̃µν2 ,

T̃µν2 =
{
m2
h p

ν
1 p

µ
2 − 2 (p1 · p3) pν3 p

µ
2 − 2 (p2 · p3) pµ3 p

ν
1

+2 (p1 · p2) pν3 p
µ
3} ,

where p2
T = (t̂û−m4

h)/ŝ ,

T1 · T2 = D − 4 , T1 · T1 = T2 · T2 = D − 2 ,

we have [1]

M++ =M−− = −F1 , M+− =M−+ = −F2 . (4)

At leading order, we can further split F1 into a triangle
diagram and a box diagram contribution, F1 = F4+F�.

As the form factor F4 only contains the triangle dia-
grams, which have no angular momentum dependence,
it can be attributed entirely to an s-wave contribution.
The form factor F2 contains only box contributions. At
NLO in QCD, the feature persists that only F1 contains
diagrams involving the triple Higgs coupling. The form
factors F1 and F2 can be attributed to the spin-0 and
spin-2 states of the scattering amplitude, respectively.

We construct projectors Pµνj such that

Pµν1 Mµν = F1(ŝ, t̂,m2
h,m

2
t , D) ,

Pµν2 Mµν = F2(ŝ, t̂,m2
h,m

2
t , D) .

For the projectors in D dimensions we can use as a
basis the tensors Tµνi defined in Eqs. (3). The projectors
can be written as

Pµν1 =
1

4

D − 2

D − 3
Tµν1 − 1

4

D − 4

D − 3
Tµν2 , (5)

Pµν2 = −1

4

D − 4

D − 3
Tµν1 +

1

4

D − 2

D − 3
Tµν2 . (6)

LO cross section

The partonic leading order cross section can be written
as

σ̂LO =
1

29 π ŝ2

∫ t̂+

t̂−

dt̂
{
|F1|2 + |F2|2

}
, (7)

where

t̂± = m2
h −

ŝ

2
(1∓ βh) , β2

h = 1− 4
m2
h

ŝ
. (8)

The leading order form factors Fi with full mass depen-
dence can be found e.g. in Refs. [1, 2].

For the total cross section, we also have to integrate
over the parton distribution functions, so we have

σLO =

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(ŝ = τs) . (9)

The luminosity function is defined as

dLij
dτ

=
∑
ij

∫ 1

τ

dx

x
fi(x, µF )fj

(
τ

x
, µF

)
, (10)

where s is the square of the hadronic centre of mass en-
ergy, τ0 = 4m2

h/s, µF is the factorization scale and fi
are the parton distribution functions (PDFs) for parton
type i.

NLO cross section

The NLO cross section is composed of various parts,
which we will discuss separately in the following:

σNLO(pp→ hh) = σLO + σvirt +
∑

i,j∈{g,q,q̄}
σreal
ij (11)
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The virtual two-loop amplitude

For the virtual two-loop amplitude, we use the projec-
tors defined in Eqs. (5),(6) to express the amplitude in
terms of the scalar form factors F1 and F2.

The virtual amplitude has been generated with an ex-
tension of the program GoSam [21, 22], where the dia-
grams are generated using Qgraf [23] and then further
processed using Form [24, 25]. This leads to about 10000
integrals before any symmetries are taken into account.
The two-loop extension of GoSam contains an interface
to Reduze [26], which we used for the reduction to mas-
ter integrals. We have defined 8 integral families with 9
propagators each. For the 6 and 7 propagator non-planar
topologies we could not achieve a complete reduction
with our available computing resources using the reduc-
tion programs Reduze [26], Fire [27] or LiteRed [28].
In this case we evaluated the tensor integrals directly,
exploiting the fact that SecDec can calculate integrals
with (contracted) loop momenta in the numerator.

After the partial reduction, we end up with 145 planar
master integrals plus 70 non-planar integrals and a fur-
ther 112 integrals that differ by a crossing. As the mas-
ter integrals contain up to four independent mass scales,
ŝ, t̂, m2

t , m
2
h, only a small subset is known analytically.

Therefore we have calculated all the integrals numerically
using the program SecDec-3.0 [20]. We partially used a
finite basis [29] for the planar master integrals, as far as it
turned out to be beneficial for the numerical integration.

The interface to SecDec has been constructed such
that the coefficients of the master integrals as they occur
in the amplitude are taken into account when evaluating
the integrals numerically. For each integral, once a rela-
tive accuracy of 0.2 is reached, the number of sampling
points is then set dynamically according to two criteria:
(i) the contribution of the integral including its coefficient
to the error estimate of the amplitude and (ii) the time
per sampling point spent on the integral. The numeri-
cal integration is continued until the desired precision for
the full amplitude is reached. This procedure allows for
a precise evaluation of the amplitude, without spending
an unnecessary amount of time on individual integrals
which are suppressed in the full amplitude.

For the numerical integration we use a quasi-Monte
Carlo method based on a rank-one lattice rule [30–
32]. For suitable integrands, this rule provides a con-
vergence rate of O(1/n) as opposed to Monte Carlo or
adaptive Monte Carlo techniques, such as Vegas [33],
which converge O(1/

√
n), where n is the number of sam-

pling points. The integration rule is implemented in
OpenCL1.1 and a further (OpenMP threaded) C++
implementation is used as a partial cross-check. The 665
phase-space points used for the current publication were
computed with ∼16 dual Nvidia Tesla K20X GPGPU
nodes using a total of 4680 GPGPU hours.

We use conventional dimensional regularization (CDR)
with D = 4 − 2ε. The top-quark mass is renormalized
in the on-shell scheme and the QCD coupling in the MS
scheme with Nf = 5. The top-quark mass counterterm
is obtained by insertion of the mass counterterm into
the heavy quark propagators. Alternatively, the mass
counterterm can be calculated by taking the derivative
of the one-loop amplitude with respect to mt. We have
used both methods as a cross-check.

Real radiation

The contributions from the real radiation, σreal
ij , can

be divided into four channels, according to the partonic
subprocesses gg → hh+g, gq → hh+q, gq̄ → hh+q̄, qq̄ →
hh+ g. The qq̄ channel is infrared finite.

We have generated the one-loop amplitudes for all sub-
processes with the program GoSam [21, 22]. For the
subtraction of the infrared poles, we use the Catani-
Seymour dipole formalism [34]. Further we use a phase-
space restriction parameter α to limit the subtractions to
a smaller region in phase space, as suggested in Ref. [35].
We have retained the full top-quark mass dependence
throughout the calculation of the 2→ 3 matrix elements
and IR subtraction terms. For the phase-space integra-
tion we use the Vegas algorithm [33] as implemented in
the Cuba library [36].

The infrared poles of the virtual contribution dσ̂virt

cancel in the combination (dσ̂virt + dσ̂LO⊗ I), where the
I-operator is given by

I =
αs
2π

(4π)ε

Γ(1− ε)

(
µ2

ŝ

)ε{
2CA
ε2

+
β0

ε
+ finite

}
. (12)

Checks

We have checked that for all calculated phase space
points the numerical cancellations of the poles in ε are
within the numerical uncertainties. For a randomly cho-
sen sample of phase-space points we calculated the poles
with higher accuracy and obtained a median cancellation
of five digits.

Our implementation of the virtual two-loop amplitude
is checked to be invariant under the interchange of t̂ and û
by recomputing 10 randomly selected phase-space points.
The part of the amplitude known from single Higgs boson
production is checked against the program of Ref. [17].
Further, the one-loop amplitude is computed using an
identical framework to the two-loop amplitude and is
checked against the result of Ref. [1].

We have verified the independence of the amplitude
from the phase space restriction parameter α. Further,
we have compared to the results of Ref. [7] for the ap-
proximations (i) and (ii) mentioned above, and found
agreement within the numerical uncertainties [37].
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As a further cross-check we have also calculated mass
corrections as an expansion in 1/m2

t in the following way:
we write the partonic differential cross section as

dσ̂exp,N =

N∑
ρ=0

dσ̂(ρ)

(
Λ

mt

)2ρ

, (13)

where Λ ∈
{√

ŝ,
√
t̂,
√
û,mh

}
, and determine the first

few terms (up toN = 3) of this asymptotic series with the
help of qgraf [23], q2e/exp [38, 39] and Matad [40],
as well as Reduze [26] and Form [24, 25].

We applied the series expansion to the virtual correc-
tions, combined with the infrared insertion operator I,
such that the expression in brackets below is infrared fi-
nite,

dσ̂virt + dσ̂LO(ε)⊗ I

≈
(
dσ̂virt

exp,N + dσ̂LO
exp,N (ε)⊗ I

) dσ̂LO(ε)

dσ̂LO
exp,N (ε)

, (14)

such that we can set ε = 0 in dσ̂LO/dσ̂LO
exp,N . There is

some freedom when to do the rescaling, i.e. before/after
the phase-space integration and convolution with the
PDFs. We opt to do it on a fully differential level, i.e. the
rescaling is done for each phase-space point individually.
The comparison of this expansion with the full result is
shown in the next section.

NUMERICAL RESULTS

In our numerical computation we set µR = µF = µ =
mhh/2, where mhh is the invariant mass of the Higgs
boson pair. We use the PDF4LHC15 nlo 100 pdfas [41–
44] parton distribution functions, along with the corre-
sponding value for αs for both the LO and the NLO
results. The masses have been set to mh = 125 GeV,
mt = 173 GeV, and the top-quark width has been set to
zero. We use a centre-of-mass energy of

√
s = 13 TeV

and no cuts except a technical cut in the real radia-
tion of pmin

T = 10−4 ·
√
ŝ, which we varied in the range

10−2 ≤ pmin
T /
√
ŝ ≤ 10−6 to verify that the contribution

to the total cross section is stable and independent of the
cut within the numerical accuracy.

Including the top-mass dependence, we obtain the to-
tal cross section at

√
s = 13 TeV

σNLO = 27.72+13.7%
−12.7% fb± 0.4% (stat.)± 0.1% (int.).

In addition to the dependence of the result on the vari-
ation of the scales by a factor of two around the cen-
tral scale, we state the statistical error coming from the
limited number of phase-space points evaluated and the
error stemming from the numerical integration of the am-
plitude. The latter value has been obtained using error

propagation and assuming Gaussian distributed errors
and no correlation between the amplitude-level results.
The value of the cross section is 14% smaller than the
Born-improved HEFT result, σNLOHEFT = 32.22+18%

−15% fb,
and about 40% larger than the leading order result,
σLO = 16.72+28%

−21%. Let us note that using a leading order
PDF set rather than an NLO one for the LO calculation
increases the LO result by about 10%.
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FIG. 1. Comparison of the full calculation to various ap-
proximations for the Higgs pair invariant mass distribution
at

√
s = 13 TeV. “NLO HEFT” denotes the effective field

theory result, i.e approximation (i) above, while “FTapprox”
stands for approximation (ii), where the top-quark mass is
taken into account in the real radiation part only. The band
results from scale variations by a factor of two around the
central scale µ = mhh/2.

The results for the mhh distribution are shown in
Fig. 1. We can see that for mhh beyond ∼ 450 GeV,
the top-quark mass effects lead to a reduction of the
mhh distribution by about 20-30% as compared to the
Born-improved HEFT approximation. We also observe
that the central value of the Born-improved HEFT re-
sult lies outside the NLO scale uncertainty band of the
full result for mhh & 450 GeV, while the FTapprox result,
where the real radiation contains the full mass depen-
dence, lies outside the scale uncertainty band for mhh

beyond ∼ 550 GeV. The scale uncertainty of the Born-
improved HEFT and FTapprox does not enclose the cen-
tral value of the full result in the tail of the mhh distri-
bution.

In Fig. 2, we show the results for the renormalized
virtual amplitude including the I-operator as defined in
Ref. [34] and compare it to various orders in an expan-
sion in 1/m2

t , see Eqs. (13),(14). In the upper panel we
normalize to the virtual HEFT result, while in the lower
panel we normalize to the Born-improved HEFT result,
i.e. V ′N = VN B/BN . The upper panel shows that the
agreement of the full result with the HEFT result is only



5

good well below the threshold at 2mt. The lower one
demonstrates that the deviations between the full result
and the Born-improved HEFT result are more than 30%
for mhh & 480 GeV.
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FIG. 2. Comparison of the virtual amplitude with full top-
quark mass dependence to various orders in a 1/m2

t expansion.
V ′
N denotes the Born-improved HEFT result to order N in the

1/m2
t expansion, i.e. V ′

N = VN B/BN .

CONCLUSIONS

We have calculated the total cross section and the mhh

distribution for Higgs boson pair production in gluon fu-
sion at NLO, including the full top-quark mass depen-
dence. We have also presented results for the Born-
improved HEFT (Higgs Effective Field Theory) approx-
imation, for the approximation where the virtual part is
calculated in the Born-improved HEFT approximation
while the real radiation part contains the full top-quark
mass dependence (FTapprox), and for an expansion in
1/m2

t . We observe that the total cross section including
the full top-quark mass dependence is about 14% smaller
than the one obtained within the Born-improved HEFT
approximation. The mhh distribution shows that for mhh

values beyond ∼ 500 GeV, the top quark mass effects lead
to a reduction of the differential cross section by about
20-30% as compared to the Born-improved HEFT ap-
proximation, and by about 10-20% as compared to the
FTapprox result. Our results demonstrate that the cal-
culation of the full top-quark mass dependence is vital
in order to get reliable predictions for Higgs boson pair
production over the full invariant mass range.

The method outlined here can in principle also be ap-
plied to the calculation of other multi-scale amplitudes

beyond one loop.
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