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We show that scattering amplitudes in magical, symmetric or homogeneous N' = 2 Maxwell-
Einstein supergravities can be obtained as double copies of two gauge theories, using the framework
of color/kinematics duality. The left-hand copy is N' = 2 super-Yang-Mills theory coupled to a
hypermultiplet, whereas the right-hand copy is a non-supersymmetric theory that can be identified
as the dimensional reduction of a D-dimensional Yang-Mills theory coupled to P fermions. For
generic D and P, the double copy gives homogeneous supergravities. For P =1and D = 7,8, 10, 14,
it gives the magical supergravities. We compute explicit amplitudes, discuss their soft limits and

study the UV-behavior at one loop.
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Perturbative calculations in gravity and gauge the-
ory have long been considered to be on fundamentally
different footing. Gravity is characterized by a non-
polynomial, non-renormalizable action that produces an
infinite number of interaction vertices, whereas renormal-
izable gauge theories only have cubic and quartic inter-
actions. Despite these obvious differences, modern work
has clarified that the perturbative expansion of gravity is
directly related to that of a pair of gauge theories through
a double-copy structure.

It has long been known that the asymptotic states of
gravity can be obtained as tensor products of gauge-
theory states. That such a simple relationship can be
extended to certain interacting theories was first shown
30 years ago by Kawai, Lewellen and Tye [1] using string
theory. Modern understanding of this double-copy struc-
ture comes from work by Bern, Carrasco and one of the
current authors [2, 3], who found a framework that is ap-
plicable to loop-level amplitudes and to a broader range
of theories. The key observation is that gauge-theory
amplitudes can be organized to expose a kinematic Lie
algebra which mirrors the gauge-group color structure.
Once gauge-theory amplitudes exhibit this duality be-
tween color and kinematics, gravity amplitudes are ob-
tained by substituting the color factors with equivalent
kinematic objects. This procedure doubles the kinematic
structures and thus expresses spin-2 theories as double
copies of spin-1 theories [2].

The double-copy construction has proven itself to be a
powerful computational tool. It fostered rapid progress
in ultraviolet (UV) studies up to four loops in maximal,
half-maximal and A/ = 5 supergravities [4-6]. Moreover,
a class of black-hole solutions has been shown to exhibit
a double-copy structure which relates them to solutions
of Maxwell’s equations with sources [7-9].

The double copy permits the construction of a broad
range of gravitational theories by varying the content
of matter (spin < 1/2) fields and their representations
and interactions in the two gauge theories. Pure and
matter-coupled gravities, including examples of Maxwell-
Einstein and Yang-Mills-Einstein theories, are some of
the theories that admit an elegant perturbative formula-
tion in this framework [1-3, 10-17].

A systematic classification of A/ < 4 supergravities
that admit double-copy constructions has not yet been
obtained. There is a rich space of such theories, and it is
not a priori obvious that the double copy can reproduce
this abundance. Indeed, in this context it is natural to
ask whether the double-copy structure can be a general
property of gravitational theories.

In this letter we consider N' = 2 Maxwell-Einstein su-
pergravity (MESG) theories dimensionally reduced from
five to four spacetime dimensions. These theories provide
a tractable arena in which structures underlying generic
gravitational theories can be uncovered. Unlike more su-
persymmetric theories, they are not uniquely specified
by their matter content alone. However, due to their
five-dimensional origin, theories in this class can be iden-
tified from their three-point interactions [18]. Using this
property, we provide a double-copy construction for three
complete classes of '=2 MESG theories: magical, sym-
metric, and homogeneous theories (the latter class con-
taining the former). General homogeneous theories can-
not be constructed as truncations of N’ = 8 or matter-
coupled N' = 4 supergravity; their string-theory origin
is also unclear. Our construction represents a major ad-
vance towards unraveling the double-copy structure of
general gravitational theories. Homogeneous supergrav-
ities now constitute the largest known family of double-
copy-constructible theories.



Homogeneous AN/ =2 MESG theories: While we are
ultimately interested in MESG theories in four dimen-
sions, we shall begin our analysis in five dimensions. Un-
like 4D theories, the full U-duality groups of 5D, N' = 2
MESG theories are symmetries of their Lagrangians.
Furthermore, N' = 2 MESG theories that describe low-
energy effective theories of compactified M/superstring
theory admit uplifts to five dimensions once quantum
corrections are neglected [19]. When coupled to n vector
multiplets, such five-dimensional theories contain (n+ 1)
abelian vector fields A{L (I,J =0,...,n), n real scalar
fields ¢® (x,y = 1,...,n), and n symplectic-Majorana
spinors. Their Lagrangian is [18]:
L = R G FL Y g0 (0,67)(06")
—1

+g%01 P FLFT AKX 4 fermions |, (1)
where Fiv are abelian field-strengths. A remarkable
property of these theories is that the Lagrangian is
uniquely determined by the constant symmetric ten-
sor Cryx whose invariance group coincides with the U-
duality group. The scalar manifold of 5D MESG theories
can be interpreted as the hypersurface defined by V(&) =
(2/3)3/2C1 yic€T¢7¢5 =1 in an (n + 1)-dimensional am-
bient space with the metric
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The matrix a 7 in the kinetic-energy term of the vector
fields is the restriction of the ambient-space metric to
the constraint surface, while the metric g, of the scalar
manifold is the pullback of the ambient-space metric to
the constraint surface.

The given structure is sufficient to calculate the
bosonic part of the amplitudes we will discuss in this
letter. We refer the reader to [18] for further details
and for the fermionic terms. These terms involve a sym-
metric tensor T,, which is the pullback of the C-tensor
to the constraint surface. The C-tensors of the theories
with covariantly-constant 7T7,. are defined by the cubic
norms of Euclidean Jordan algebras of degree three, and
their scalar manifolds are symmetric spaces [18]. The
four magical MESG theories are defined by simple Jor-
dan algebras of Hermitian 3 x 3 matrices over real and
complex numbers, quaternions, and octonions [20]. They
are the only wunified MESG theories in five dimensions
with homogeneous scalar manifolds. The unique unified
5D Yang-Mills Einstein theory with homogeneous scalar
manifold is obtained by gauging the quaternionic magi-
cal MESG theory [21]. The generic Jordan theories are
defined by the infinite family of non-simple Jordan alge-
bras of degree three. These two classes exhaust the list
of 5D MESG theories with symmetric target spaces such
that the full isometry group is a symmetry of the La-
grangian. There exists another infinite family of MESG

theories with symmetric target manifolds, the so-called
generic non-Jordan family [22], where not all the isome-
tries of the target manifolds extend to symmetries of the
5D Lagrangian [23].

The most general form of the C-tensor consistent with
unitarity was given in ref. [18] and depends on n(n? — 1)
parameters. The cubic norms V(§) of MESG theo-
ries with homogeneous scalar manifolds and a transitive
group of isometries can be brought to the form [23]

V() = V2(€0(&1)?=€0(€1)?) +£1 (€) 24T 4£°¢2€P | (3)

where 4,5 = 2,3,...,¢ + 2 and «,f are indices with
range 7. f‘zaﬂ are symmetric gamma matrices forming
a real representation of the Clifford algebra C(q + 1,0).
V(&) in eq. (3) are generically labeled by two integers
g > —1and P > 0, except when ¢ = 0,4 (mod 8), in
which case the extra parameter P > 0 is also present.

The corresponding MESG theories give the coupling of
(24+q+7) vector multiplets to the gravity multiplet in 5D,
with r = PD, or r = (P + P)D,. The values for D, are
listed in table I. The generic Jordan family corresponds
to ¢ = P = 0 and P arbitrary and to P = P = 0 and
q arbitrary; the magical theories correspond to P = 1
and ¢ = 1,2,4,8, while the generic non-Jordan family
theories correspond to ¢ = —1.

Upon dimensional reduction the Lagrangian (1) can be
used to describe four-dimensional MESG theories. The
homogeneous N' = 2 MESG theories in 4D were first
classified in ref. [24] using the so-called C-map and the
known classification of homogeneous quaternionic mani-
folds [25]. However, the list of ref. [24] is not complete.
There exists an additional infinite family of homogeneous
theories that descend from the generic non-Jordan family,
which under the C-map lead to a novel family of homo-
geneous quaternionic manifolds [23]. A further infinite
family of 4D MESG theories can be found with sym-
metric target manifolds SU(n,1)/U(n), which does not
descend directly from 5D [26] but that can be obtained
by truncation from the generic Jordan family.

The bosonic spectrum of the 4D MESG theory that
descends from 5D contains the graviton, (n 4 2) vectors
Al A7 and (n+1) complex scalars 2°,..., 2". The
4D Lagrangian is associated to the following holomorphic
prepotential in a symplectic formulation [24, 27-29],

2 Crx2lz7 7K
3v3 zZ-t ’
I

where Z4(z) are holomorphic functions of the scalars z7.
To carry out perturbation theory it is necessary to ex-
pand the Lagrangian around some base point, for which a
canonical choice is Z4 = (1, £, %,O, ...,0). We then re-
define (and dualize) fields to enlarge the manifest symme-
try and obtain canonically-normalized quadratic terms.

We refer the reader to the supplemental material [33]

F(Z4) = (4)



q D, (g, P, P) conditions flavor group
-1 1 P R S0(P)
0 1 P+P RW SO(P)x SO(P)
1 2 2P R SO(P)
2 4 4P R/W U(P)
3 8 8P PR USp(2P)
4 8 8P+8P PRW  USp(2P)xUSp(2P)
5 16 16P PR USp(2P)
6 16 16P R/W U(P)
k+8 16Dy, 167(k, P, P) as for k as for k

TABLE I: Parameters in the construction of homogeneous
MESGs as double copies. The second column gives the pa-
rameter Dy, the third column gives the number r of 4D ir-
reducible spinors in the non-supersymmetric gauge theory,
which can obey a reality (R), pseudo-reality (PR) or Weyl
(W) conditions. The flavor group is listed in the last column.

and to ref. [17] for technical details. Finally, the result-
ing Lagrangian is used to construct amplitudes which are
compared with the ones from the double copy.

Double-copy construction: The m-point ampli-
tudes of Yang-Mills (YM) theories are naturally repre-
sented by cubic graphs labeled by their topology, gauge-
group representations of internal and external edges, and
particle momenta. The i-th graph is associated to the
product of the corresponding propagators, to a color fac-
tor ¢; constructed by dressing each cubic vertex by the
Clebsh-Gordan coefficient of the representations of the
three fields (structure constants or group generators),
and to a kinematic numerator n; encoding the remain-
ing state dependence. To construct an amplitude which
manifestly obeys color/kinematics duality one must find
kinematic numerators with the same symmetries and al-
gebraic identities as the color factors [2]. Schematically

ci—cj=cp & n;—n;=ng, (5)

where the color factor identities stem from the commuta-
tion/Jacobi relations of the gauge group and thus involve
three graphs.

The double-copy principle states that, once duality-
satisfying numerators are found, the L-loop amplitudes
of a supergravity theory are given by

— LD >
(L) _1(F 2L+m—2 / d*Pe 1 ngiy
Mm 7 (2) Z (QW)LD S; Haisai’ (6)
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where k is the gravity coupling, S; are symmetry factors,
and 1/s,, are propagator denominators. The n;, i; may
be identical or distinct gauge-theory numerators. The
formula is valid if at least one of the two sets of nu-
merators satisfies manifestly the duality [3, 30]. In our
construction, we obtain n; from a supersymmetric gauge
theory, and n; from a non-supersymmetric one. It is
critical that we consider gauge theories with some fields
transforming in a generic representation R of the gauge

group. Indeed, a judicious choice for the representation
R will enable us to capture a larger set of supergravities
with our construction.

The gauge-theory copies: The first (left) gauge theory
entering the construction is an N = 2 super-Yang-Mills
(SYM) theory with a single half-hypermultiplet trans-
forming in a pseudo-real representation R of a gauge
group G. To be precise, pseudo-real means that there ex-
ists a unitary antisymmetric matrix V obeying VTV T =
—(T%)*, where T% are the representation matrices. With
this choice, the half-hypermultiplet is CPT self-conjugate
and we do not need to include additional fields in the the-
ory. We will see that using the smallest possible multiplet
allows to formulate double-copy constructions for larger
classes of supergravities, including in particular all the
magical supergravity theories. A canonical example for
R is the fundamental representation of USp(2N). Note
that the matrix V can be used to lower or raise gauge
representation indices.

The on-shell spectrum of the supersymmetric gauge-
theory factor is

(Ai7wia¢d)G @ (A€i7w€l7éd)g @ (X+78013902>X7)R )

where d,IA) are adjoint indices of GG, and indices corre-
sponding to the representation R are suppressed. Am-
plitudes in this theory can be conveniently organized
into superamplitudes with manifest N = 2 supersym-
metry [33].

The second (right) gauge
supersymmetric YM theory with
and r fermions. Its Lagrangian is

theory is a
(¢ + 2)

non-
scalars

i—a

1 . 1 A )
L= Fi, F 4 2(Dup") (D"6")" + S X D" Aa

O |

2 e
+ g¢aaFi ﬁXQ’}STa)\,G _ nga efcda¢aa¢bb¢ac¢bd.(7)

The scalars transform in the adjoint representation of G,
while fermions transform in the pseudo-real representa-
tion R. As before d,l; are adjoint gauge-group indices,
while o, 8 = 1,...,7 and a,b = 1,...,q + 2 are global-
symmetry indices. Spacetime spinor indices and indices
associated to the representation R are not displayed.
Imposing color/kinematics duality on the numerators of
four-point amplitudes [33] gives the following constraint
in the two-scalar-two-fermion case:

Ny — N =Ny — {Fa,Fb} =267 | (8)
i.e. that the constant matrices I'* appearing in the
Yukawa couplings form a (¢ + 2)-dimensional Clifford al-
gebra. It is convenient to think of the theory above as
the dimensional reduction of a (g + 6)-dimensional YM
theory with fermionic matter to four dimensions. From
a higher-dimensional perspective, the spinor A, includes



P copies (or flavors) of irreducible SO(g + 5,1) spinors,
obeying reality (R) or pseudo-reality (PR) conditions:

A= \c, oV, R: C=C,, PR: C=C,Q2, (9)
where C, and Cy are the SO(q + 2) and SO(3,1)
charge-conjugation matrices with qu"“Cq_l = —((I")Y,
Coyteyt = —C(vM)t, ¢ = £1. Q is an anti-symmetric
real matrix acting on the flavor indices, V' is the matrix
in the pseudo-reality condition for the gauge representa-
tion matrices, and C is unitary. R conditions are appro-
priate for ¢ = 0,1,2,6,7 (mod 8) and generically yield a
SO(P) manifest flavor symmetry. PR conditions are im-
posed for ¢ = 3,4,5 (mod 8) and yield a USp(2P) flavor
symmetry.

For even ¢, we can impose Weyl conditions of the form
T' A = £\, where T, is the chirality matrix. For ¢ = 0,4
(mod 8), Weyl conditions are compatible with R and PR
conditions, and the representations with different chi-
ralities are inequivalent. Hence the corresponding the-
ories are parameterized by two distinct integers P and P
counting the number of representations of each kind. Fi-
nally, for ¢ = 2,6 (mod 8) one can rewrite the Lagrangian
in terms of Weyl spinors, enhancing the manifest flavor
symmetry to U(P).

From a double-copy perspective, the resulting 4D su-
pergravity theory has one vector multiplet for each 4D
fermion in the non-supersymmetric gauge theory. The
various possibilities are listed in table I, which pro-
vides a novel perspective on the results of ref. [23]. In
particular, the parameter D, introduced in that paper
equals the minimal number of 4D fermions in the non-
supersymmetric gauge theory. Indeed, a large part of
the supergravity symmetry is already manifest in this
gauge theory. The full U-duality Lie algebras of 4D
homogeneous supergravity theories decompose as G =
Go @ G1 © G2 with

Go = s0(1,1) ® so(q +2,2) & 54(P, P)

G1 = (1, spinor, vector), Gs = (2,1,1), (10)

where 5,(P, P) is the flavor group in table I, and the
grade 1 and 2 generators are labeled by their grade zero
representations. The 4D supergravity theories with sym-
metric target spaces have additional symmetry genera-
tors corresponding to the grade —1 and —2 subspaces of
the isometry Lie algebras [18].

Amplitudes from the double copy: For the (N =
2) ® (M = 0) construction given here, the identification
of supergravity states with the double-copy of asymptotic
gauge-theory fields is as follows:

A= A, he=A_®A_,
A =9 A, i =A, ®A_,
A =A_@¢*, iZ"=¢®¢",

Ap_ =x- @ (UN)a iZo = X+ @ (UX_)a , (11)

with similar relations for the CPT-conjugate states. Here
U is a unitary rotation of the spinors in the non-
supersymmetric theory. The scalar-fermion-fermion am-
plitude in the non-supersymmetric theory takes the form
A (169,200,305 ) = —ig/V/2 (23)(T°C 1) 0sTOV 1,
where C' is the matrix in eq. (9). With the identifica-
tion (11), the double copy (6) of the above and a vector-
hyper-hyper amplitude gives, for example, the following
vector-vector-scalar amplitude:

(0) a - K 2 rrtav—1
M(1AY 2A,_,3Z3)=—=(12)(U'T*C™U),
3 ( zﬁ) 2\/§< > ( ) B8
(12)

where global spinor indices have been restricted to the
subspaces of appropriate chiralities for ¢ = 0,4 (mod 8).
The matrices I'* are related to the matrices I'* in the cu-
bic norm (3) as (U'T*C~'U) = ( — 1,4I"). Explicit ex-
pressions for U can be found for each ¢ as explained in the
supplemental material [33]. We have verified that three-
point amplitudes from the double copy match exactly the
ones computed from the supergravity Lagrangian.

It is possible to confirm, without any reference to a
Lagrangian, that our construction yields supergravities
with scalar manifolds that are locally homogeneous close
to the base point. Indeed, a generalization of the argu-
ments of ref. [31] implies that all single soft-scalar limits
of amplitudes vanish for scalars parameterizing a homo-
geneous manifold. It is easy to see that this is so if the soft
particle (scalar) transforms under a manifest symmetry.
Since all the double-copy scalars except the dilaton-axion
pair 2% transform under the manifest SO(g + 2) global
symmetry, only the soft dilaton/axion limit requires a
detailed analysis. Its vanishing implies that the double-
copy theory is invariant under an additional U(1) sym-
metry. We have verified that this is indeed the case and
that the tree-level amplitudes with field configurations
with a total non-zero U(1) charge vanish identically at
four and five points.

Our construction carries over to loop-level amplitudes.
As an example, we give the one-loop divergence for am-
plitudes between four identical matter vectors:

bs10 q r

w367
(1) (1 40 oAa 24a 44a ,é(&gg)
M (1A_,2A_,3A+,4A+)‘div = (5 +5+13)

MEP(14°,24° 349 ,449)

with b = 2i/(4m)?(r/2)*(12)?[34]. Interestingly, the two
amplitudes have the same divergence when r = 2¢. This
condition is satisfied only by the four magical theories,
which are unified, and by the so-called STU model (¢ =
r=0) [32].

In conclusion, we have shown that scattering ampli-
tudes in homogeneous N = 2 supergravities — including
magical and symmetric theories — can be obtained as dou-
ble copies of two simple gauge theories using the frame-
work of color/kinematics duality. To date, this is the



largest known family of double-copy-constructible the-
ories. Color/kinematics duality naturally requires the
Clifford algebra structure that has been instrumental in
the classification of homogeneous theories and provides
an alternative perspective on these theories; in particu-
lar, the homogeneity of their target spaces manifests itself
in the amplitudes’ vanishing soft limits. We note that it
is straightforward to introduce supergravity hypermul-
tiplets in our construction by adding scalars transform-
ing in the representation R to the non-supersymmetric
gauge theory. The double-copy approach is particularly
well-suited for carrying out loop-level computations. The
existence of a double-copy construction for such a large
family of theories suggests that the double-copy can play
a fundamental role in general gravity theories. General-
izations of our construction to accommodate even larger
classes of theories, including supergravities with a lower
number of isometries and gauged R-symmetry groups,
appears to be within reach.
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