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Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick
velocity to the merger remnant. If a component of the kick along the line-of-sight is present, grav-
itational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the
kick builds up. We develop a simple prescription to capture this effect in existing waveform models,
showing that future gravitational-wave experiments will be able to perform direct measurements,
not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA
space mission will measure supermassive black-hole kick velocities as low as ∼ 500 km s−1, which
are expected to be a common outcome of black-hole binary coalescence following galaxy mergers.
Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave
astronomy.

PACS numbers: 04.25.dg, 04.30.-w, 04.70.Bw, 04.80.Nn

Introduction. – Merging black-hole (BH) binaries
have entered the realm of observational astronomy. On
September 14, 2015, gravitational waves (GWs) emitted
during the inspiral and merger of two stellar-mass BHs
of ∼ 30M� at z ∼ 0.1 were detected by the two LIGO
detectors [1]. GW150914 constitutes not only the first
direct detection of GWs, but also the first observation of
a stellar mass BH binary. The identification of supermas-
sive BH binary candidates has (so far) only been possible
through electromagnetic observations [2, 3]. The most
promising candidates have been identified as double-core
radio galaxies [4] and quasars with periodic behaviors
[5, 6]. Upcoming GW observations will revolutionize the
field of BH binary astrophysics: stellar-mass BH binaries
will be targeted by a worldwide network of ground-based
interferometers [7–9] while the eLISA space mission [10]
will observe hundreds (if not thousands) of supermassive
BH binaries out to cosmological redshifts and open the
era of multi-frequency GW astronomy.

In this Letter, we show that the enormous potential
of future GW observations is further enriched by the di-
rect observability of BH kicks. BH binaries radiate GWs
anisotropically which leads to a net emission of linear mo-
mentum and, by conservation of momentum, to a recoil
of the final remnant. This effect has been studied exten-
sively using post-Newtonian (PN) and numerical tech-
niques; see e.g. [11] and references therein. The key find-
ings of these studies are that the merger of non-spinning
BHs can only produce kicks of ∼ 170 km s−1 [12], but
that recoil velocities as large as ∼5000 km s−1 are possi-
ble if rapidly rotating BHs with suitable spin orientations
collide [13–15]. These exceptionally large recoils are com-
monly refered to as superkicks and their dynamics can be
attributed to anti-parallel spin components in the orbital
plane [16].

BH kicks have striking astrophysical consequences,

especially for supermassive BHs. Superkicks of
O(1000) km s−1 easily exceed the escape velocity of even
the most massive galaxies [17], and may thus eject BHs
from their hosts [18]. Such ejections would affect the
fraction of galaxies hosting central BHs [19, 20] and, con-
sequently, the expected event rates for eLISA [21]. Even
smaller recoil velocities . 500 km s−1 affect the dynam-
ics of galaxy cores by displacing the post-merger BHs
for time scales as large as ∼ 10 Myr [22, 23]. BH kicks
may lead to a variety of electromagnetic signatures [24]
and observational strategies [25, 26] have recently been
proposed for their detection. Candidates are present
but their nature is debated (see [24, 27] and references
therein) and, overall, BH kicks remain elusive.

If GW observations of a BH binary provide accurate
measurements of the component masses and spins, it is in
principle possible to use numerical relativity (NR) results
to infer the kick that the binary should have received
around merger (this was not possibile for GW150914
[28]). Such an approach, however, would be of in-
direct nature and crucially relies on the validity of the
assumptions in the numerical modeling process. For in-
stance, it would not provide an additional consistency
check of the predictions of general relativity (GR). As
argued here, it is possible instead to directly measure BH
kicks from the GW signal alone. If the kick is directed
towards (away from) the Earth, then the latter part of
the waveform will be blue (red) shifted relative to the
early part. Roughly speaking, different, Doppler-shifted
mass parameters would be inferred from the inspiral
and ringdown parts of the signal if analyzed separately.
More precisely, by observing the differential Doppler-
shift throughout the signal, one can directly measure the
change in speed of the system’s center of mass as a func-
tion of time.

Doppler mass shift. – In the absence of a mass or
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FIG. 1. GW shift due to BH kicks (artificially exaggerated to demonstrate the key features). As the kick velocity builds up
during the last few orbits and merger, the emitted GWs are progressively redshifted (left) or blueshifted (right), depending
on the sign of the projection of the kick velocity vk onto the light-of-sight n̂. This is equivalent to differentially rescaling the
binary’s total mass in the phase evolution from M to M(1 +vk · n̂). These figures have been produced by artificially imparting
kicks of vk · n̂ = ±0.5c to non-spinning equal-mass binaries, assuming a Gaussian kick model with σ = 60M [see Eqs. (4)-(5)
with αn = 0 for n ≥ 1].

length scale in vacuum GR, the GW frequency f en-
ters the binary dynamics exclusively in the dimension-
less form fM , where M is the total mass of the binary
(hereafter G = c = 1). This scale invariance implies
a complete degeneracy between a frequency shift and a
rescaling of the total mass of the system. For example,
the cosmological redshift z of a BH binary merely en-
ters in the predicted GW emission through a rescaling
of the total mass by a factor (1 + z) and, hence, GW
observation of the binary only measures the combination
M(1+z)[29]. BH kicks produce a similar effect: at linear
order, the motion of the center of mass shifts the emitted
GW frequency by a factor 1 + vk · n̂ whilst leaving the
amplitude unaffected (vk is the kick velocity with mag-
nitude vk and the unit vector n̂ denotes the direction of
the line-of-sight from observer to source). There is, how-
ever, one crucial difference: while cosmological redshift
homogeneously affects the entire signal, a frequency shift
due to BH kicks gradually accumulates during the last
orbits and merger. This point is illustrated in Fig. 1: as
a kick is imparted to the merging BHs, the emitted GWs
are progressively blue- or red-shifted. The frequency of
the signal changes as if the mass of the system was varied
from M in the early inspiral to M(1 +vk · n̂) by the end
of the ringdown.

The detectability of this effect can be estimated us-
ing the following back-of-the-envelope argument. Imag-
ine breaking a BH binary waveform into two parts: in-
spiral and ringdown, h(t) = hi(t) + hr(t). For simplic-
ity, assume that the kick is imparted instantaneously at
merger so that only hr is affected. Let Mi and Mr respec-
tively denote the total binary mass as measured from hi

and hr alone. Neglecting the energy radiated in GWs1,
the effect of a kick is to Doppler-shift the final mass ac-
cording to Mr = Mi(1 + vk · n̂). The inspiral part hi
of the GW signal generally contains a larger fraction of
the signal-to-noise ratio (SNR) than the ringdown part
hr, so the detectability of the kick will be limited by the
measurement of Mr: kicks of magnitude vk can be de-
tected if Mr is measured with a fractional accuracy of
. vk/c (∼ 1% for a superkick along the line of sight).
The ringdown waveform can be modeled using the least
damped quasi-normal mode for a Schwarzschild BH [30]
hr(t) ' A exp(−0.089t/Mr) sin(0.37t/Mr) which gives a
squared SNR

ρ2r =
1

Sn

∫ ∞
0

hr(t)
2 dt ' 2.66MrA

2

Sn
, (1)

assuming white noise in a detector with power spectral
density (PSD) Sn(f) = Sn = const. The error on the
measurement of Mr can be estimated using the linear
signal approximation,(

1

∆Mr

)2

=
1

Sn

∫ ∞
0

(
∂

∂M
hr(t)

)2

dt ' 25.6A2

MrSn
, (2)

Therefore, the fractional error on Mr is given by

∆Mr

Mr
' 0.322

ρr
. (3)

This back-of-the-envelope argument suggests that kicks
along the line-of-sight with magnitude vk ∼ 0.003c '

1 This effect is not negligible in magnitude, resulting in a reduction
of the mass by ∼ 5 %, but can be estimated accurately from the
waveform and thus be accounted for.
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900 km s−1 can be measured with GW observations if
the SNR in the ringdown is ρr ∼ 100. Direct detec-
tion of BH kicks will be very challenging, if not impossi-
ble, with current ground-based detectors. For instance,
the rather loud event GW150914 has a ringdown SNR
ρr ∼ 5 [31], which would only allow us to measure unre-
alistically large kicks vk ∼ 0.06c. On the other hand, BH
kicks are very promising observables for space-based de-
tectors, where SNRs in the ringdown can reach ρr ∼ 103

[32]. This will allow for measurements of supermassive
BH kicks with magnitude as low as vk ∼ 100 km s−1,
which are expected to be ubiquitous [33, 34]. The de-
tectability of the kick is governed by ringdown part of
the SNR ρr, which has also been found to be important
to detect the GW memory effect (see [35] where kicks
are also mentioned) and test the Kerr hypothesis via BH
spectroscopy [30].

Kicked waveforms. – In order to investigate the de-
tectability of BH kicks more quantitatively, we need a
waveform model that captures the cumulative frequency
shift they introduce. Doppler shifts due to BH kicks can
be straightforwardly incorporated into any pre-existing
waveform model (which does not include the kick) by
substituting M →M × [1 + v(t)] in the phase evolution,
where v(t) is the projection of the center-of-mass velocity
due to the kick onto the line-of-sight. Here, we only con-
sider the non-relativistic Doppler shift; relativistic cor-
rections enter at the order O(vk)2 . 10−4, well below
the magnitude relevant for our analysis. The profile v(t)
is taken such that v(t)→ 0 as t→ −∞ and v(t)→ vk · n̂
as t → ∞. A common observation in NR simulations is
that the kick is imparted over a time 2σ ∼ 20M centered
on the merger, at a rate dv/dt which is approximately of
Gaussian shape [36, 37], possibly with some deceleration
after merger (antikick) [38, 39]. In contrast to the kick
speed, relatively little is known regarding the kick pro-
file beyond these qualitative observations. We therefore
adopt a flexible model for the kick profile. We expand
dv/dt according to

d

dt
v(t) = vk · n

∑
n αnφn(t)∫∞

−∞
∑
n αnφn(t) dt

, (4)

φn(t)=
1

σ
√

2nn!
√
π

exp

(
− (t− tc)2

2σ2

)
Hn

(
t− tc
σ

)
, (5)

where Hn are the Hermite polynomials, tc is the time
of coalescence, σ controls the duration over which the
kick is accumulated and the αn weigh the various com-
ponents. The functions φn(t) constitute a complete basis
(they are actually the familiar solutions for the quantum
harmonic oscillator) and so they can model all possible
kick profiles. This basis is particularly appealing, be-
cause the first two terms n = 0, 1 model Gaussian ac-
celeration profiles and antikicks, respectively. The case
σ = 0 and αn = 0 for n ≥ 1 corresponds to a kick instan-
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FIG. 2. Mismatches introduced by BH recoils. The top panel
shows the mismatch 1 −O between (i) a standard waveform
of equal-mass non-spinning BH binaries of total mass M and
(ii) a ‘kicked’ waveform which includes the Doppler-shifting
effects of a velocity profile v(t). Each line corresponds to a
different kick profile v(t), as shown in the bottom panel. All
models shown here assume αn = 0 for n ≥ 2. The σ = 10M ,
α1/α0 = 0 model (solid line) is used in Fig. 3.

taneously imparted at tc, as assumed in the back-of-the-
envelope argument presented above. We have tested this
prescription against 200 NR waveforms from the public
SXS catalogue [40], finding that the radiated-momentum
profiles obtained from integrating the l ≤ 6 modes of the
Newman-Penrose scalar Ψ4 are well approximated by the
first two terms of the expansion of Eqs. (4-5). For sys-
tems with kicks above 500 km s−1, residuals in vk are less
than 17% in all cases, and typically less than 4% [41].

For a given waveform approximant, GW detector, and
binary parameters, we generate two signals: a standard
waveform h0(t) and a second ‘kicked’ waveform hk(t).
The two waveforms can be compared by calculating their
overlap

O = max
tc,φc

(h0|hk)√
(h0|h0)(hk|hk)

, (6)

where (h0|hk) is the noise-weighted inner product [43]
and tc (φc) is the time (phase) of coalescence. Approxi-
mately, two waveforms are distinguishable (and the kick
detectable) if O . 1 − ρ−2 [44], where ρ =

√
(h0|h0) is

the SNR (of the full waveform). This assumes the kick is
not degenerate with other parameters, which is expected
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FIG. 3. Detectability of BH kicks with LIGO (left) and eLISA (right). For each simulated source we compute the overlap O
between standard and ‘kicked’ waveforms, and compare it with the SNR ρ. Kick velocities –here encoded in the color bar– are
imparted using NR fitting formulae. BH kicks are detectable for the fraction F of the sources above the black line, O < 1−ρ−2.
eLISA results have here been generated with the ‘N2A5L6’ PSD of [42].

as the kick mostly affects the ringdown and not the entire
signal.

This procedure is illustrated in Fig. 2 using a sim-
ple controlled experiment. We consider 6 inspiral cycles,
merger and ringdown of an equal-mass non-spinning BH
binary (a similar set-up to that used in Fig. 1). For sim-
plicity, and to ensure that the results are not detector
specific, the overlaps have been computed using a flat
PSD. Artificially imposed recoils of ∼ 1000 km s−1 intro-
duce mismatches (1 −O) ∼ 10−5. Kicks are more likely
to be detected if they are imparted over a longer period
of time (i.e. larger σ) because dephasing starts to occur
earlier in the inspiral (this effect can be seen in Fig. 1
where a larger value of σ = 60M was used). Note that
the overlaps are approximately symmetric with respect
to the transformation vk → −vk, i.e. blueshifts and red-
shifts are equally detectable. This property can be shown
to hold exactly at linear order in vk [41].

We next explore more realistic scenarios by using NR
fitting formulae to predict the kick velocity. For this
purpose, we generate two BH binary populations for the
LIGO and eLISA detectors. LIGO (eLISA) sources were
selected randomly from the following distributions: uni-
form total mass M ∈ [10M�, 100M�] ([105M�, 106M�])
and mass ratio q ∈ [0.05, 1]; uniform dimensionless spin
magnitudes χ1, χ2 ∈ [0, 1]; isotropic inclination and
spin directions at a reference GW frequency fref = 20
Hz (2 mHz); isotropic sky location; sources are dis-
tributed homogeneously in comoving volume with co-
moving distance Dc ∈ [0.1 Gpc, 1 Gpc] ([1 Gpc, 10 Gpc])
assuming the Planck cosmology [45]. We use the LIGO
‘Zero-Det-High-P’ PSD of [46] with lower cutoffs flow =
10 Hz, and the two possible eLISA PSDs ‘N2A5L6’ and
‘N2A1L4’ of [42] with flow = 0.3 mHz (the former being
more optimistic; for simplicity we neglect the spacecraft
orbital motion which can be separately accounted for).
For each binary, we estimate the kick velocity using the

fitting formula summarized in [47]. In order to return
accurate estimates, the kick formula require as input the
BH spin parameters at separations r ∼ 10M , comparable
to the initial separations of the NR simulations used in
the formula’s calibration. Otherwise, resonant effects [48]
are not adequately accounted for and lead to erroneous
kick magnitudes [49]. We bridge the separation range
between fref and r = 10 M using the orbit-averaged PN
evolution code of [47]. The NR fitting formula then pro-
vides expressions for the kick components parallel and
orthogonal to the binary orbital angular momentum L:
v‖ and v⊥. The projection of the kick velocity along the
line-of-sight is given by

vk · n̂ = v‖ cos Θ cos ι− v⊥ cos Θ′ sin ι , (7)

where cos ι = L̂ · n̂ is the cosine of the inclination at
r = 10M , Θ is related to the direction of the orbital-
plane components of the spins at merger [36, 50], and
Θ′ sets the direction of the orbital-plane component of
the kick [41]. In practice, both Θ and Θ′ depend on the
initial separation of the binary in the NR simulations.
While the Θ dependence has been studied extensively
in the literature [36, 50], the impact of Θ′ and its re-
lation with Θ have, to our knowledge, not yet been ex-
plored. In the following, both angles are drawn uniformly
in [0, π]. For each system, we generate two waveforms, h0
and hk, using the inspiral-merger-ringdown approximant
‘IMRPhenomPv2’ of [51–53] which accounts for spin pre-
cession. We have verified our results for the overlaps are
insensitive to the choice of the waveform approximant,
even when non-precessing models are used. In the fol-
lowing, we assume a “Gaussian” kick model, described
by αn = 0 for n ≥ 1 and σ = 10M (solid curve in Fig. 2);
cf. [36].

Our results are summarized in Fig. 3. As suggested by
our previous argument, none of the LIGO sources have
mismatches high enough to detect the kick. The eLISA
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case is different: ∼ 1% to 6% (depending on the PSD)
of the simulated sources have O < 1 − ρ−2 and there-
fore present detectable BH kicks. Kicks with a projected
magnitude vk · n̂ & 500 km s−1 at ρ & 1000 will be gener-
ically observable, but even some of the lower kicks with
vk · n̂ ∼ 100 km s−1 may be accessible. In the fortu-
nate case of a superkick directed along the line-of-sight
(|vk · n̂| ∼ 3000 km s−1), the effect may be so promi-
nent to be distinguishable at SNRs as low as ρ ∼ 50. As
eLISA is expected to measure up to O(100) BH binaries
per year [10, 42], our study suggests that ∼ 6 yr−1 (∼ 30
in total for a 5-yr mission lifetime) sources may present
detectable kicks. Although more realistic astrophysical
modeling is needed to better quantify this fraction, our
simple study shows that direct detection of BH recoils is
well within the reach of eLISA. Third-generation ground-
based detectors will also present promising opportunities:
repeating the calculations of the LIGO population of bi-
naries but observed with ET (assuming the ‘ET-D-sum’
PSD of [54], with flow = 1 Hz) we find ∼ 5% of binaries
posses detectable kicks.

GW observations not only have the potential to mea-
sure the magnitude of the BH kick, but also the details
of how the velocity accumulates with time. By expand-
ing v(t) according to Eqs. (4-5), one can take the kick
model parameters vk · n̂, σ and αn to be free parameters
of the waveform model, and treat them on an equal foot-
ing with masses, spins, inclination angles, etc. Consider,
for example, a golden system at ρ = 104 with component
masses of 1.3×106M� (chosen to maximize the mismatch
caused by the kick), misaligned extremal spins and incli-
nation such that vk · n̂ ∼ 5000 km s−1 km. A Fisher
matrix calculation of the intrinsic parameters of this bi-
nary suggests that eLISA will be capable of measuring
the kick velocity with precision ∆vk ∼ 200 km s−1, the
kick duration with precision ∆σ ∼ 1M and the presence
of an antikick at the level of ∆(α1/α0) ∼ 0.1 (consider-
ing a two-component kick model, i.e. αn = 0 for n ≥ 2)
[41]. This Fisher matrix analysis revealed no strong de-
generacies between the kick and other parameters, thus
further justifying our previous use of the overlap as a
detectability criterion for the kick. Finally, note that
superkicks have v‖ � v⊥ so that face-on or face-off bina-

ries |L̂ · n̂| ∼ 1 generate the largest velocity components
along the line of sight and, hence, are most favorable for
a direct kick measurement.

Conclusions. – BH kicks leave a clear imprint on the
GW waveform emitted during the late stages of the in-
spiral, merger and ringdown of BH binaries. eLISA and,
likely, third-generation ground-based detectors will be
able to directly detect the presence of a kick from the
distortion of the waveform for a significant fraction of
the binaries observed. By comparing the directly mea-
sured kicks (both magnitude and profile) to the NR kick
predictions for a binary with measured masses and spins,

it will be possible to verify whether linear momentum is
radiated as predicted by GR. Much like the Hulse-Taylor
pulsar provided the first evidence that GWs carry away
energy in accordance with the expectation of GR, and
GW150914 provided the first direct evidence of the GWs
themselves [1], a direct measurement of a BH kick will
provide the first direct evidence for the linear momentum
carried by GWs.
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